

How to cite: Majid, H. and Anuar, S. (2025). Benchmarking Native Multi-Output, Regressor Chain and TPOT-MTR Models.

Journal of Advanced Geospatial Science & Technology. 5(1),111-133.

 Benchmarking Native Multi-Output, Regressor Chain and

TPOT-MTR Models

Hanafi Majid1,3, Syahid Anuar2

1Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia

2Faculty of Artificial Intelligence, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
3Malaysia Board of Technologist, 1, Jalan P8G, Presint 8, 62000 Putrajaya, Wilayah Persekutuan Putrajaya,

Malaysia

*Corresponding author: hanafimajid@graduate.utm.my

__

Abstract – Native multi-output expands its capabilities to include multi-target regression using a genetic programming

approach. It outperforms state-of-the-art methods on multi-target regression datasets, enhancing prediction accuracy and

decision-making in multi-target regression domains. However, it relies heavily on a single target strategy, which may not

capture complex interdependencies between multiple targets. Additionally, the systems lack understanding of how linked targets

in multi-target regression are handled, making it difficult for practitioners to determine the real connections. The purpose of

this study is to evaluate and assess the Native Multi-Output, Regressor Chain and TPOT-MTR model using six relevant public

datasets. The methods used were Pearson Correlation and aRRMSE. The research focuses on multi-target regression using

AutoML and TPOT, focusing on the TPOT multi-output regression technique. The proposed model is expected to improve

correlation and provide customization options, contributing to the advancement of multi-target regression using AutoML

techniques. It concludes with a comprehensive analysis of the algorithm’s performance in addressing difficulties in multiple

target regression and evaluating its ability to identify and employ relevant features for improved predictive correlation. The

results show that TPOT-MTR shows stronger correlation performance across most datasets, especially when target relationship

capture is vital. However, its performance advantage is reduced in datasets with weakly connected or naturally well-structured

targets. In conclusion, TPOT-MTR is a reliable tool for modelling target correlations, especially in multi-target learning tasks.

Its performance varies depending on the dataset structure, with Regressor Chain and Native Multi-Output performing better in

densely linked datasets. However, it may not always provide the lowest aRRMSE, making it a good substitute for simpler

models. Further research can explore more intricate datasets and integrate neural networks.

Keywords – Multi-Target Regression, AutoML, Machine Learning, Genetic Programming, Multi-Output Regression

©2025 Penerbit UTM Press. All rights reserved.

Article History: Received 15 August 2024, Accepted 31 January 2025, Published 28 March 2025

VOL 5, NO.1 (March 2025) 111-133

https://jagst.utm.my

mailto:hanafimajid@graduate.utm.my

112

1.0 Introduction

Machine learning has made significant progress in recent years, with Automated Machine Learning

(AutoML) being a significant achievement in the field. AutoML has shown advantages in

applications like multi-target regression (MTR), which involves simultaneously predicting

numerous interconnected output variables. However, the challenge in MTR is effectively handling

the relationship between target variables. Conventional methods often fail to consider the specific

relationships between each objective, leading to less optimal performance and erroneous forecasts.

AutoML offers a solution by using automation to investigate various models and

configurations, minimizing manual labour and ensuring models are fine-tuned to the unique

attributes of the data. The Tree-based Pipeline Optimization Tool (TPOT) has shown significant

potential in AutoML, focusing on classification problems and genetic programming to create

machine-learning pipelines for maximum accuracy. Researchers have expanded TPOT to tackle

multi-target regression, creating TPOT-MTR, which uses genetic programming techniques to

optimize the entire data preparation pipeline, feature selection, and model training for MTR

problems, focusing on handling target correlations.

AutoML is a machine-learning technique used for multi-target regression but doesn’t

evaluate individual correlations between targets. This gap in correlation issues between targets will

cause poor relationships among them and result in less accuracy and performance. Therefore, the

proposed TPOT-MTR method combines optimization algorithms and pipeline designs specifically

for multi-target regression to address this issue. This innovative approach aims to deliver

competitive performance and respect fundamental relationships among targets by considering

complex interactions between output variables. TPOT-MTR aims to provide a highly effective

solution for complex predictive modelling tasks that require multi-target regression, generating

sophisticated and dependable data-driven insights across various fields. This paper presents a

comparative analysis of multiple methods, including TPOT-MTR, ERC-SVR, and native multi-

output, to provide a better understanding of correlation solutions between targets using different

techniques.

Three distinct objectives are established to guide the research effort. These objectives drive

the focus and provide a holistic account of multi-target regression using AutoML issues based on

the genetic algorithm, relating them to performance-related problems. The following is a summary

of the research objectives to ensure that they will be the focus. They are as follows:

113

a) To conduct a comparative analysis of native multi-output, regressor chain and

TPOT-MTR using six public datasets.

b) To highlight key points of performance metrics from multiple methods using six

public datasets.

c) To evaluate and assess the method of TPOT-MTR, ERC-SVR and native multi-

output model using six public datasets.

This research focuses specifically on multi-target regression using AutoML, particularly on

the TPOT multi-output regression technique. The study aims to describe the trained model of multi-

target regression using AutoML and TPOT, a supervised machine learning technique. The intention

is to provide a clear understanding of the proposed multi-target regression model and its potential

benefits for application users in improving their applications’ availability. To maintain a clear focus

on the research objectives, this study excludes the exploration of other regular machine learning

(ML) systems and their features and implementation models.

ML systems’ architectural and workflow aspects are also out of scope and will not be

discussed in detail. The primary goal is to propose a multi-target regression model using AutoML

and TPOT rather than delving into technical aspects related to the architecture and programming

of regular ML systems. The research will specifically investigate the utilization of multi-target

regression within the AutoML TPOT framework, which is based on a genetic algorithm system.

The output of the proposed model is expected to benefit users by improving accuracy and providing

the flexibility to customize the model according to their application preferences. Focusing on the

multi-target regression model in AutoML TPOT, this research aims to provide insights and a

foundation for future improvements in multi-target regression using AutoML techniques.

Overall, the research scope centers on describing and analyzing a trained multi-target

regression model using AutoML based on the TPOT technique. The focus is on understanding the

potential benefits of this model for application users, improving accuracy, and providing

customization options. The research aims to contribute to advancing multi-target regression within

the AutoML domain, specifically in the context of TPOT and genetic algorithms.

The current level of multi-target regression can be found using regular machine learning

algorithms. Regression problems, called multi-output or multi-target regression, aim to predict

several continuous target variables. The complexity of the issue, the amount and quality of the

114

dataset, the selection of algorithm and hyperparameters, and the evaluation measure employed all

affect the degree of performance for multi-target regression.

The strength of this research lies in the proposed model, which facilitates AutoML, and this

model will be justified in ensuring the effectiveness of the regression model. The proposed model

has several advantages, including greater accuracy and efficiency in error-rated metrics. This will

help analysts to:

• Make a good prediction because this proposed model facilitates the AutoML with multi-

target regression.

• Chances of rechecking the hyperparameter to tune up the efficiency and accuracy based

on the dataset.

• Mitigate potential harmful effects of unexpected issues on a running pipeline.

In developing the model process, gaps will inevitably be bridged by focusing on multi-

target regression using AutoML-TPOT and making recommendations to further improve and

achieve optimal accuracy in managing efficiency, which is the significance of the research. The

significance of this study is demonstrated by the evaluation of the proposed model, which benefits

and provides value-added to the multi-target regression mechanism in AutoML-TPOT, specifically

based on the genetic programming AutoML system. The prediction-trained model can initiate the

following action to make a prediction and inadvertently provide an early warning signal to any

proposed systems, thereby preventing unwanted events.

1.1 Study Gap

Current AutoML systems are designed for single-target strategy, and current multi-target regression

challenges the correlation between targets. TPOT-MTR, an AutoML system, addresses this by

expanding its capabilities of correlating between targets to include multi-target regression. Using a

genetic programming approach, TPOT-MTR finds the optimal mix of machine learning algorithms

and hyperparameters for multi-target regression tasks. It outperforms state-of-the-art methods on

various multi-target regression datasets, suggesting its potential to enhance prediction accuracy and

facilitate decision-making in domains where multi-target regression is common.

 Many steps have been taken to improve multi-target regression by solving association

problems, but some study gaps still need to be filled. Existing multi-target regression systems, such

115

as native multi-output, focus heavily on the single-target strategy, which may not always capture

the complex interdependencies between multiple targets effectively. Despite native multi-output

and regressor chains making predictions more accurate, they do not directly model the statistical

relationships between linked targets. This means that it might not work well in datasets where target

factors are strongly dependent on each other.

Another significant gap is that AutoML systems don’t make it easy to understand how they

handle linked targets in multi-target regression. There are numerous current methods, such as native

multi-output and regressor chains, that focus on predictive correlation but don’t demonstrate how

the goal factors interact with each other. Because of this, it is challenging for practitioners to

determine if the connections found are genuine or simply errors made by the automatic modelling

process. Future studies should investigate methods that integrate domain knowledge with advanced

feature engineering techniques to better handle correlated goals.

2.0 Materials and Methods

2.1 Automated Machine Learning (AutoML)

Automated Machine Learning (AutoML) is frequently commended for its capacity to simplify the

machine-learning process by decreasing the time and expertise necessary to develop and deploy

models (Chauhan et al., 2020). AutoML endeavours to expedite model development while

minimizing human intervention by deconstructing the conventional machine-learning pipeline into

smaller automated modules. Nevertheless, this automation has drawbacks, notably in complex data

preprocessing and feature engineering, which necessitate domain-specific expertise despite its

efficiency. Additionally, the quality and nature of the input data are critical factors in the efficacy

of AutoML tools, which can automate model selection, hyperparameter tuning, and optimization.

This presents a substantial challenge for real-world applications.

AutoML can open up machine learning to businesses that may not have extensive technical

expertise, making it easier for them to adopt AI-driven solutions. By streamlining key steps such

as selecting models and fine-tuning parameters, AutoML accelerates the onboarding process for

various industries, making it easier for anyone to engage with machine learning to address

problems. AutoML can enhance model correctness by testing multiple model designs; however, its

automated nature may lead to suboptimal selections if not closely monitored. User-friendliness and

model development control are balanced in fully automated and semi-automated AutoML systems.

116

Fully automated systems reduce human input; however, they may not be flexible enough for

complex jobs. Semi-automated solutions offer more flexibility but need expertise, making them

less accessible to non-experts.

Although AutoML appears to be a viable approach to operationalizing machine learning

tools on a broader scale, it still has a long way to go before it can be practically applied. A study

by Krauß et al. (2020) discusses the challenges of incorporating AutoML into production

environments and its performance, which is still not as effective as that of data science specialists.

AutoML can handle some crucial steps in the machine learning process, like data preparation,

modelling, deployment, and integration. But it’s not flexible enough for complicated tasks because

it can’t adapt to different domains. It doesn’t work well in situations like independent learning and

reinforcement learning, where human help is still needed. AutoML also struggles with high-

dimensional and diverse data, which is a common issue in real-world applications. This indicates

that it requires further improvements to be more easily understood, scalable, and overall better.

A study by Krauß et al. (2020) also highlights the potential and limitations of AutoML

while comparing it to human data science experience. It critically examines the factors influencing

the success of ML projects in production. Data integration, modelling, and deployment are only a

few of the ML pipeline processes that AutoML automates. However, the effectiveness of AutoML

still relies heavily on the skill and judgment of production experts. A significant obstacle noted is

the lack of agreement on the best method for assessing AutoML systems, as their effectiveness

depends much on usability, toolkit breadth, and domain expertise. By grouping AutoML

stakeholders into academic, business, and data preparation categories, the scattered nature of

AutoML adoption is highlighted, and various user groups are suggested to prioritize different

needs. AutoML is limited, even though it has great potential to increase the output of ML projects.

It cannot entirely replace human decision-making, especially in jobs that require sophisticated

knowledge of industry-specific needs.

Automated Machine Learning (AutoML) and Metalearning are emerging fields that aim to

reduce human reliance on machine learning models. They have a long way to go. AutoML

automatically searches for neural architectures to speed up model creation, but it can’t handle

complex, domain-specific tasks; therefore, it’s only suitable for typical datasets. On the other hand,

meta-learning enhances learning speed by leveraging information from multiple datasets. However,

it remains challenging to apply in real-life scenarios because it requires substantial computing

117

power and exhibits issues with generalization. A study by Doke and Gaikwad (2021) discusses the

ongoing efforts to integrate these two methodologies, demonstrating the potential for enhanced

automation. AutoML asserts that it will reduce the necessity for data scientists; however, domain

knowledge is still required to ensure that machine learning applications are comprehensible and

dependable. This is remarkably accurate in the actual world, where the complexity and variability

of data present significant challenges.

However, not all machine learning issues can be solved with AutoML. Machine learning

practitioners’ skills and domain knowledge are still crucial for the quality of data used to train

models and the quality of the models themselves. AutoML systems can boost ML project

productivity, but application-domain knowledge and domain-specific expertise must be

incorporated for desired outcomes.

2.2 Multi-Target Regression (MTR)

A generic data-transformation methodology is suggested for MTR feature ranking, which includes

two variations of each score. The findings identify the factors that influence the quality of the

rankings and demonstrate that both groups of approaches yield significant feature rankings.

Petković et al. (2020) suggest a universal technique for sorting MTR features using RReliefF and

ensemble-based scoring. The study employs 24 MTR benchmark problems, characterized by

characteristics ranging from 6 to 576 and objectives ranging from 2 to 16. The instances used in

the study vary in number from 103 to 60607. The results indicate that the ensemble technique is

the most suitable for a specific relevance score in ensemble-based feature ranking, and the MTR

rankings may be compared to their single target (STR) equivalents.

Using ensembles of regressors, where multiple regression models are trained independently

on the same input characteristics and their outputs are combined to predict the numerous targets, is

a widely adopted method for MTR in AutoML. Numerous applications, including the prediction of

several water quality indices in environmental science, have demonstrated the efficacy of this

method. For example, forecasting the synthesis of secondary metabolites in fungi (life sciences),

learning habitat models for a variety of species, and predicting forests are all examples of real-

world problems that may be phrased as MTR tasks (Breskvar & Dzeroski, 2020).

The article “Multi-Target Regression via Input Space Expansion” by Spyromitros-Xioufis

et al. (2016) suggests a novel method for MTR that entails expanding the input feature space to

118

include all potential pairwise interactions between features and then training a single regressor on

the expanded feature space. Using satellite data to anticipate various environmental factors, the

authors show how good their method is.

Previous studies, such as those (Breskvar & Dzeroski, 2020) propose expanding the

functionality of a method called FIRE for learning multi-target regression rules by incorporating

random output selections (ROS) into the learning process of tree ensembles. Individual Predictive

Clustering Trees (PCT)s are limited to analyzing a small subset of the target variables in such

ensembles. The rules gleaned from the tree ensemble similarly narrow in on specific groups of the

dependent variables (FIRE-ROS).

The latest research highlights the substantial influence of TPOT-MTR and other AutoML

techniques in improving the performance of multi-target regression (MTR) models (Majid, Anuar,

and Hassan, 2023). By efficiently capturing the interconnections among the variables of interest,

these methods can generate more precise and dependable predictions, leading to progress in MTR

and its practical implementations (Abdallah, Grati, and Boukadi, 2023). The increasing demand

for advanced predictive models emphasizes the significance of ongoing enhancement and

advancement of AutoML tools to tackle the difficulties in MTR (Gawalska et al., 2023). Feature

Ranking in MTR (Petković, Džeroski, & Kocev, 2020) presents a universal MTR feature ranking

system based on RReliefF and ensemble-based scoring. It has been tested on 24 benchmark sets,

showing generalizability. It lacks comparison with deep learning methods, which are becoming

more popular in MTR. Future studies aimed at better performance should investigate neural

network-driven feature ranking.

Environmental and biological sciences extensively apply multi-target regression, as shown

in Breskvar and Dzeroski (2020). It forecasts forest models, species habitats, and water quality

metrics. AutoML finds high-dimensional, sparse, or unbalanced data challenging. The black-box

character of ensemble models lowers interpretability and calls for explainable artificial intelligence

techniques in terms of expanding features and alternative MTR techniques.

 Input feature space extension suggested by Spyromitros-Xioufis et al. (2016) would help

MTR performance. The drawback is that computational cost rises dramatically, and huge datasets

cannot be viable. The FIRE-ROS approach (Breskvar & Dzeroski, 2020) restricts the number of

target variables investigated while nevertheless helping to reduce complexity. Although further

119

study should focus on balancing accuracy, efficiency, and scalability, TPOT-MTR (Majid, Anuar,

& Hassan, 2023) and AutoML approaches show some potential to address this issue.

2.3 Dataset

The datasets utilized in the experiments are concisely presented below.

2.3.1. Jura

The Jura (Swan, 1998) database contains measurements of 7 heavy metals: chromium, nickel,

cadmium, zinc, cobalt, lead, and copper. These measurements are taken at 359 distinct locations

within a specific region in Switzerland. Each area is assessed for its land usage, including meadow,

forest, tillage, pasture, and the type of rock present, such as Quaternary, Argovian, Portlandian,

Sequanian, or Kimmeridgian. In a multi-target regression context, the objective is to forecast the

concentration of higher-value metals, which are regarded as the main variables, based on the

measurements of lower-value metals used as input variables. This study examines copper, lead, and

cadmium as the major focus, but all other metals, land usage type, rock type, and location, are used

as predictive inputs.

2.3.2. Slump

The concrete slump database (Yeh, 2007) predicts three attributes of concrete: flow, slump, and

compressive strength. These attributes are considered dependent vector variables and are

influenced by seven concrete components: blast furnace slag, superplasticizer, cement, water, fly

ash, fine aggregate, and coarse aggregate.

2.3.3. Andro

Andro database (Hatzikos et al., 2008) focuses on predicting six future water quality parameters in

Thessaloniki, Greece: oxygen levels, pH, temperature, salinity, turbidity, and conductivity. The

target variable records are acquired from subaquatic sensors with a sample interval of nine seconds.

The measurements are averaged to derive a single record for each variable per day. The typically

utilized database is constructed by employing a five-day time window. The attributes pertain to six

water quality measurements taken up to five days prior, with a time lag of five days. In other words,

the expected values for each variable for the next six days are determined.

120

2.3.4. Electrical Discharge Machining (EDM)

The Electrical Discharge Machining database (Karalič and Bratko, 1997) is used for a regression

job with two outcome variables. This dataset aims to enhance the machining speed by imitating the

behaviours of a human operator who oversees two output responses. The output can have three

distinct numeric values: -1, 0, or 1. There are sixteen continuous input features available.

2.3.5. ENB

The Energy Building database (Tsanas and Xifara, 2012) focuses on addressing the issue of energy

efficiency by forecasting the heating and cooling load requirements of buildings based on eight

characteristics, including roof area, total height, and glazing area, among others.

2.3.6. SCM20d

The code SCM20d refers to the supply chain management database compiled from the Trading

Agent Competition in the supply chain management competition. The data pretreatment and

normalization techniques are explained in depth in reference (Groves and Gini, 2013). The

SCM20d dataset pertains to the forecast of the “Product Future” category. Each row in the dataset

corresponds to a single day of observation in the tournament, which spans 220 days and consists

of eighteen games. The input characteristics represent the recorded prices for a single day in the

event. Furthermore, four samples with a time delay are included for each observed component and

product to aid in predicting the current trends. The SCM20d dataset provides the average price for

each commodity over twenty consecutive days.

3.0 Methodological Steps

The methodological steps will be explained in three steps: selecting the data sources, preparing the

chosen model, and lastly, model assessment.

Step 1: Selecting the Data Sources and Approaches

The first stage is finding and choosing pertinent data sources from six public datasets utilized for

the analysis. The data’s quality, dependability, and completeness must be carefully evaluated to

121

ensure its fit for the research. Ensuring that the dataset is used in current and past studies is also

important to compare its results. We also consider data availability, ethical issues, and congruence

with the study goals. Organizing and preprocessing the data for additional examination comes next

after the data sources are complete.

Step 2: Preparation of the Selected Model

Once the data sources and methods of approach have been chosen, the model ready for analysis

must be developed. Data cleansing, addressing missing values, and variable transformation to

guarantee they are in the right shape for modelling are among these aspects. After that, the model

parameters are chosen based on empirical results or theoretical frameworks; they remain constant

across several methods, ensuring their accurate depiction of the topic under examination.

Furthermore, features engineering and data normalizing techniques might be used to enhance the

model’s prediction performance. Finally, the model is trained on the chosen dataset, and the first

validation is performed to evaluate its preliminary performance.

122

 The pseudocode for the initial deployment without TPOT and the predicted function are

illustrated in Figure 1. The deployment of the iterative algorithm during this phase is the primary

objective, as it is designed to continue perusing the next target of outputs. However, external

elements should not disrupt this phase, as this will increase the algorithm’s complexity and the

number of challenges. The algorithm’s fundamental structure, including the definition of pipeline

fitting classes, should be sufficient. The subsequent phase involves the development of a

pseudocode that is both TPOT-enabled and does not include the predict function, as illustrated in

BEGIN
 # Define MultiOutputTP class
 CLASS MultiOutputTP:
 FUNCTION __init__(self, *args, kwargs):
 self.args ← args
 self.kwargs ← kwargs

 FUNCTION fit(self, X, y):
 # Ensure X and y are 2D arrays
 Convert X, y to 2D format

 # Ensure X and y have the same number of
rows
 IF number_of_rows(X) ≠ number_of_rows(y):
 THROW ERROR

 # Determine number of target variables (yy)
 yy ← number_of_columns(y)

 # Initialize empty list for regressors
 self.regs ← []

 RETURN self

END

BEGIN
 # Define MultiOutputTP class
 CLASS MultiOutputTP:
 FUNCTION __init__(self, *args, kwargs):
 self.args ← args
 self.kwargs ← kwargs

 FUNCTION fit(self, X, y):
 # Ensure X and y are 2D arrays
 Convert X, y to 2D format

 # Ensure X and y have the same number of
rows
 IF number_of_rows(X) ≠ number_of_rows(y):
 THROW ERROR

 # Determine number of target variables (yy)
 yy ← number_of_columns(y)

 # Initialize empty list for regressors
 self.regs ← []

 # Train individual TPOTRegressor models
for each target
 FOR i FROM 0 TO yy - 1:
 Define REG as TPOTRegressor with:
 generations = 5
 population_size = 50
 verbosity = 2
 random_state = 123
 max_time_mins = None
 max_eval_time_mins = 5
 cv = 10
 scoring = 'neg_mean_squared_error'
 # Prepare training data for target i
 Xi ← concatenate(X with first i columns of
y)
 yi ← column i of y

 # Fit the model and store it
 Append REG.fit(Xi, yi) to self.regs

 RETURN self
END

BEGIN
 # Define MultiOutputTP class
 CLASS MultiOutputTP:
 FUNCTION __init__(self, *args, kwargs):
 self.args ← args
 self.kwargs ← kwargs

 FUNCTION fit(self, X, y):
 # Ensure X and y are 2D arrays
 Convert X, y to 2D format

 # Ensure X and y have the same number of
rows
 IF number_of_rows(X) ≠ number_of_rows(y):
 THROW ERROR

 # Determine number of target variables (yy)
 yy ← number_of_columns(y)

 # Initialize empty list for regressors
 self.regs ← []

 # Train individual TPOTRegressor models
for each target
 FOR i FROM 0 TO yy - 1:
 Define REG as TPOTRegressor with:
 generations = 5
 population_size = 50
 verbosity = 2
 random_state = 123
 max_time_mins = None
 max_eval_time_mins = 5
 cv = 10
 scoring = 'neg_mean_squared_error'
 # Prepare training data for target i
 Xi ← concatenate(X with first i columns of
y)
 yi ← column i of y

 # Fit the model and store it
 Append REG.fit(Xi, yi) to self.regs

 RETURN self

 FUNCTION predict(self, X):
 # Initialize output array for predictions
 Define y as empty matrix with dimensions
(X.shape[0], length(self.regs))
 # Generate predictions for each target
variable
 FOR i, REG in enumerate(self.regs):
 y[:, i] ← REG.predict(concatenate(X with
first i columns of y))

 RETURN y
 # Instantiate MultiOutputTP and train model
 Define REG2 as MultiOutputTP(1)
 Fit REG2 on (X_train, y_train)

 # Make predictions
 Define YPRED2 as REG2.predict(X_test)

END

Figure 1: Pseudocode for Initial

Deployment without TPOT and

Predict Function

Figure 2: Pseudocode with TPOT

and without Predict Function

Figure 2: Pseudocode with TPOT

and Predict Function

123

Figure 2. The primary objective of the deployment during this phase was to incorporate TPOT into

the algorithm.

Furthermore, the appropriate hyperparameter was selected and incorporated into the

pipelines. The fitting algorithm was manually tested several times to determine the most suitable

parameters for the datasets. The pseudocode with TPOT, which includes the predict function, is

illustrated in Figure 3 to provide a more comprehensive understanding of the results. This phase

should be exhaustive, incorporating all aspects of multi-target regression. The prediction result can

also be transferred to the subsequent step, model assessment. It includes and selects all pertinent

metrics for the evaluation.

Step 3: Model Assessment

Once the model is prepared, it undergoes rigorous assessment to determine its effectiveness and

reliability. Various performance metrics, including mean absolute correlation, average relative root

mean square error (aRRMSE), and a Pearson Correlation Heatmap, are used to evaluate the model’s

predictive capability. Cross-validation techniques will be applied to ensure the model generalizes

well to new data and is not overfitting. Additionally, sensitivity analysis can be conducted to

examine how variations in input data impact model outcomes. Based on the assessment results,

necessary adjustments will be made to improve the model before its final implementation.

3.1 Methods

The instrumentation consists of the tools, frameworks, and techniques used to implement and

evaluate the machine learning models. The study utilized publicly available benchmark datasets,

including those from the UCI Machine Learning Repository and Kaggle. Preprocessing tools, such

as Pandas, NumPy, and Scikit-learn, were used to clean, normalize, and split the dataset into

training and testing sets.

Scikit-learn was used to develop and implement different machine learning models. Algorithms to

be compared may include supervised models (Decision Trees, Random Forest, SVM, Neural

Networks) and unsupervised models (PCA). Performance was measured using standard evaluation

metrics such as aRRMSE and Mean Absolute Correlation, depending on the type of machine

learning task. Cross-validation techniques such as k-fold cross-validation will be applied to ensure

robustness and generalizability. Statistical tools such as Pearson Correlation Analysis may be used

124

to determine significant differences between models. Visualization tools like Matplotlib and

Seaborn will be used to represent results graphically.

The study's design and instrumentation framework ensure a systematic and objective

comparison of different machine-learning approaches while maintaining reproducibility and

reliability in the findings. Table 1 below presents the pseudocode for the native multi-output

regressor chain and TPOT-MTR, which are also part of the selected model’s preparation. Native

multi-output and regressor chains are the existing multi-target regression library retrieved from the

scikit-learn, which is also widely used in multi-target regression models. To compare, the proposed

TPOT-MTR, as shown in the figure below, utilizes the current TPOT library but is enhanced with

a multi-target wrapper, differing from the current native multi-output and regressor chain. The table

below outlines the key points regarding the three approaches to simplify the differences.

Table 1: Comparison Table Between Native Multi-Output, Regressor Chain and TPOT-MTR

Feature MultiOutputRegressor RegressorChain

TPOT-MTR (Multi-

Target Regression with

TPOT)

Modelling Targets
Independent models

for each target

Sequential models with

dependencies

Sequential models with

automated feature

selection &

optimization

Workflow Parallel Sequential

Sequential with

automated pipeline

tuning

Interdependency Ignores relationships Model’s relationships

Model’s relationships

dynamically using

genetic algorithms

Speed
Faster (no

dependencies)

Slower (sequential

nature)

Slower due to

automated model

selection &

hyperparameter tuning

Error Propagation None Possible

Possible but mitigated

through adaptive

optimization

Scalability
Scales well for many

targets

May struggle with

many targets

Handles many targets

but may be

computationally

expensive

125

 Figure 4 below shows pseudocode for a native multi-output design, intended as an

automated machine learning (AutoML) tool that utilizes evolutionary algorithms to optimize model

selection and hyperparameter tuning; the Multi-Output Regressor wraps the TPOT Regressor.

Negative mean squared error (neg_MSE) is the evaluation metric; the model achieves strong

performance using a 10-fold cross-validation (cv=10). A TransformedTargetRegressor manages

target variable transformations, guaranteeing appropriate scaling of y_train and y_pred. Once

trained, the model produces predictions for X_test from X_train and y_training. For challenging

multi-target regression projects, this method combines the adaptability of multi-output regression

with the force of automated model tweaking.

 Starting with TPOT as the basic model, the Regressor Chain method, as shown below in

Figure 5, ignores minor mistakes within a specified margin using epsilon-insensitive loss. Its dual-

mode operation guarantees the best performance, and a high repetition limit helps to achieve

appropriate convergence. After that, the RegressorChain uses a sequential modelling method

wherein an order of [0,1,2] chains forecasts together. This implies that every target variable is

expected one after the other, with each next target including the forecast of the prior target as a

BEGIN
 # Initialize a multi-output regressor with TPOTRegressor
 Define RFG as MultiOutputRegressor(
 TPOTRegressor with parameters:
 generations = 5
 population_size = 50
 verbosity = 2
 random_state = 123
 n_jobs = 1
 max_time_mins = None
 max_eval_time_mins = 5
 cv = 10
 scoring = 'neg_mean_squared_error'
)

 # Create a TransformedTargetRegressor with target transformation
 Define MODEL as TransformedTargetRegressor(
 regressor = RFG
 transformer = target_transformer
)

 # Fit the model to the training data
 MODEL = RFG.fit(X_train, y_train)

 # Make predictions on the test set
 Y_PRED = MODEL.predict(X_test)

END

Figure 4: Pseudocode for Native Multi Output

126

supplementary element. A TransformedTargetRegressor scales y_train and y_pred2 to ensure the

target variables are appropriately converted. Finally, the model is trained using X_train and y_train,

and the structural relationships between target variables generate predictions for the X_test.

 The custom multi-output regression method TPOT-MTR (Multi-Output TPOT Regressor),

as shown in Figure 6 below, trains independent TPOT Regressor models for each target variable.

By traversing all target variables and training separate models, the Multi-OutputTP class is

designed to handle this procedure. The approach guarantees that X and y are in 2D format

throughout the fit step. It then runs over every column of y, adding previously handled target

columns (y[:, :i] to augment the input X. For every target variable, a separate TPOTRegressor is

trained; the trained models are kept on hand for future use.

The prediction method starts an empty matrix to hold forecasts. The approach iteratively

forecasts each goal sequentially among the trained models. Previously projected values (y[:, :i])

are used as extra characteristics for further predictions, guaranteeing a structured link between

target variables. Finally, a multi-transfer learning example called reg2 is developed and trained on

BEGIN
Define the base regressor as LinearSVR
Define REG2 as LinearSVR with parameters:
epsilon = 0.0
tol = 0.0001
C = 1.0
loss = 'epsilon_insensitive'
fit_intercept = True
intercept_scaling = 1.0
dual = True
verbose = 2
random_state = None
max_iter = 100000000

Initialize RegressorChain using LinearSVR as the base estimator
Define CHAIN as RegressorChain(
base_estimator = REG2
order = [0,1,2]
)

Fit the regressor chain model to the training data
CHAIN.fit(X_train, y_train)

Create a TransformedTargetRegressor with target transformation
Define MODEL as TransformedTargetRegressor(
regressor = CHAIN
transformer = target_transformer
)

Train the transformed model on the training data
MODEL.fit(X_train, y_train)

Make predictions on the test set
Y_PRED2 = MODEL.predict(X_test)

END

Figure 12-1: Pseudocode for Regressor Chain Figure 2-2:Pseudocode for Regressor Chain Figure 5: Pseudocode for Regressor Chain

127

X_train and y_training. Leveraging the learnt relationships across several target variables, it

provides predictions for X_test once trained.

4.0 Results and Discussion

The results for six datasets are explained further, including error metrics such as Mean Absolute

Correlation and aRRMSE.

BEGIN
 # Define MultiOutputTP class
 CLASS MultiOutputTP:
 FUNCTION __init__(self, *args, kwargs):
 self.args ← args
 self.kwargs ← kwargs

 FUNCTION fit(self, X, y):
 # Ensure X and y are 2D arrays
 Convert X, y to 2D format

 # Ensure X and y have the same number of rows
 IF number_of_rows(X) ≠ number_of_rows(y):
 THROW ERROR

 # Determine number of target variables (yy)
 yy ← number_of_columns(y)

 # Initialize empty list for regressors
 self.regs ← []

 # Train individual TPOTRegressor models for each target
 FOR i FROM 0 TO yy - 1:
 Define REG as TPOTRegressor with:
 generations = 5
 population_size = 50
 verbosity = 2
 random_state = 123
 max_time_mins = None
 max_eval_time_mins = 5
 cv = 10
 scoring = 'neg_mean_squared_error'
 # Prepare training data for target i
 Xi ← concatenate(X with first i columns of y)
 yi ← column i of y

 # Fit the model and store it
 Append REG.fit(Xi, yi) to self.regs

 RETURN self

 FUNCTION predict(self, X):
 # Initialize output array for predictions
 Define y as empty matrix with dimensions (X.shape[0], length(self.regs))
 # Generate predictions for each target variable
 FOR i, REG in enumerate(self.regs):
 y[:, i] ← REG.predict(concatenate(X with first i columns of y))

 RETURN y
 # Instantiate MultiOutputTP and train model
 Define REG2 as MultiOutputTP(1)
 Fit REG2 on (X_train, y_train)

 # Make predictions
 Define YPRED2 as REG2.predict(X_test)

END

Figure 6: Pseudocode for TPOT-MTR

128

Table 2: Mean Absolute Correlation Result for Six Datasets

Dataset

Name

Native Multi

Output

Regressor

Chain

TPOT-

MTR

Jura 0.658

0.775

0.815

Slump 0.546
0.593

0.580

Andro 0.535 0.525 0.511

EDM
0.510

0.602

0.633

ENB
0.990

0.992 0.994

SCM20D 0.649 0.666 0.681

Table 2, which presents the Mean Absolute Correlation findings, provides information on the

degree of link capture between various target variables across six datasets using each technique.

Stronger interdependencies across targets, as indicated by a higher mean absolute correlation value,

suggest a more effective modelling strategy for capturing these interactions. TPOT-MTR regularly

gets the most outstanding correlation values across all datasets, proving its efficacy in modelling

target connections. For the Jura dataset, TPOT-MTR, for instance, obtains a mean absolute

correlation of 0.815, surpassing both Native Multi-Output (0.658) and Regressor Chain (0.775).

This trend is also shown in the EDM dataset. TPOT-MTR achieves 0.633, compared to Regressor

Chain (0.602) and Native Multi-Output (0.510), indicating its ability to capture interdependence

among multiple target variables more effectively.

 Not all datasets, nevertheless, demonstrate a notable benefit for TPOT-MTR*. While in the

Andro dataset, Native Multi-Level leads marginally (0.535) over Regressor Chain (0. 525),

Regressor Chain performs better in the Slump dataset, 0.593 against 0.580. These results imply

that the advantages of TPOT-MTR may be less noticeable in datasets with smaller target

interdependencies. All three techniques perform similarly for datasets with extremely high

correlations, including ENB; TPOT-MTR (0.994) shows only a nominal advantage over Regressor

Chain (0.992) and Native Multi-Output (0.990). This implies that model selection may not

significantly impact performance when target variables are highly correlated.

129

 TPOT-MTR performs better across most datasets, especially when target relationship

capture is vital. Its performance advantage, however, diminishes in datasets where targets are either

weakly connected or naturally well-structured, suggesting that the optimal approach may depend

on the type of dataset rather than a one-size-fits-all solution.

Table 3: aRRMSE Result Using Three Different Approaches

Dataset Name Native Multi Output Regressor Chain TPOT-MTR

Jura 0.020 0.021 0.052

Slump 0.019 0.021 0.051

Andro 0.017 0.010 0.012

EDM 0.120 0.112 0.149

ENB 0.001 0.003 0.007

SCM20D 0.000 0.000 0.001

Table 3 shows the aRRMSE result for six datasets using three approaches. Regressor Chain

has the lowest ARRMSE (0.010), followed by TPOT-MTR (0.012) and finally, Native Multi-

Output (0.017) for the Andro dataset. Here, TPOT-MTR performs well, almost matching the

Regressor Chain and well above the Native Multi-Tracker. This implies that TPOT-MTR gains by

modelling interactions between targets, making it more competitive in datasets with output

dependencies. Regressor Chain (0.112) performs the best in the EDM dataset; Native Multi-Output

(0.120) follows, with TPOT-MTR earning the most significant error (0.149). This suggests that

TPOT-MTR suffers in this dataset because its evolutionary optimization technique does not

adequately capture the fundamental linkages.

 Native multi-output routinely gets the best results (0.001 and 0.000, respectively) for

datasets with very low ARRMSE values, including ENB and SCM20D. TPOT-MTR remains

competitive (0.007 and 0.001), even though it lags somewhat. These results demonstrate that all

three approaches achieve nearly ideal performance when the dataset structure allows for highly

accurate predictions. Even if TPOT-MTR does not get the lowest ARRMSE, overall, it stays

competitive across datasets. In situations like Andro, where it beats Native Multi-Order and closely

follows the Regressor Chain, its performance is very noteworthy. On datasets like EDM, where

conventional techniques excel, TPOT-MTR’s evolutionary approach may struggle to match their

130

accuracy. Notwithstanding these differences, TPOT-MTR appears to be a suitable alternative in

several situations, particularly for complex target interactions.

5.0 Conclusion

On performance, the ARRMSE results show another view, nevertheless. Although TPOT-MTR

remains competitive in some situations, it does not consistently yield the lowest error. TPOT-MTR

has the highest ARRMSE (0.149) in datasets such as EDM; Regressor Chain (0.112) and Native

Multi-Output (0.120) perform better here. This suggests that TPOT-MTR’s evolutionary

optimization strategy may occasionally fail to achieve optimal performance in datasets where

simpler models can effectively represent the target-output connections. Still, TPOT-MTR is a good

substitute, mainly when information on target correlations is more crucial than the lowest possible

error.

 Additionally significant is the fact that the efficacy of TPOT-MTR varies depending on the

dataset structure. With TPOT-MTR achieving 0.994 compared to 0.992 (Regressor Chain) and

0.990 (Native Multi-Output) in datasets with strong natural correlations between targets, such as

ENB, the performance variations between all three approaches become insignificant. This implies

that the choice of technique could have little effect on performance in densely linked datasets. On

the other hand, TPOT-MTR offers no appreciable benefit over the other two methods in datasets

with less interdependencies, such as Andro (MAC: 0.511) and Slump (MAC: 0.580). These results

indicate that TPOT-MTR is most suitable for datasets where establishing relationships between

targets is a priority, rather than solely minimizing prediction errors.

 TPOT-MTR generally satisfies its goal of offering a solution for modelling target

correlations; hence, it is beneficial for multi-target learning tasks where knowledge of

interdependencies is essential. Although it may not always yield the lowest ARRMSE, its ability

to model complex connections between outputs makes it a valuable tool when conventional

methods are challenging. The results suggest that selecting the appropriate regression technique

should depend on the dataset's requirements; if reducing error is the primary goal, Regressor Chain

or Native Multi-Order may be preferred. However, TPOT-MTR appears to be an effective and

dependable tool when the goal is to analyze and utilize target correlations for enhanced predictions.

131

Acknowledgement

This study is not funded by any organization.

Conflict of Interest

The authors declare no conflict of interest.

References

Abdallah, Emna Ben, Rima Grati, and Khouloud Boukadi. 2023. “Towards an Explainable

Irrigation Scheduling Approach by Predicting Soil Moisture and Evapotranspiration via

Multi-Target Regression.” Journal of Ambient Intelligence and Smart Environments 15 (1).

doi:10.3233/AIS-220477.

Breskvar, Martin, and Saso Dzeroski. 2021. “Multi-Target Regression Rules with Random Output

Selections.” IEEE Access 9. Institute of Electrical and Electronics Engineers Inc.: 10509–22.

doi:10.1109/ACCESS.2021.3051185.

Chauhan, Karansingh, Shreena Jani, Dhrumin Thakkar, Riddham Dave, Jitendra Bhatia, Sudeep

Tanwar, and Mohammad S. Obaidat. 2020. “Automated Machine Learning: The New Wave

of Machine Learning.” In 2nd International Conference on Innovative Mechanisms for

Industry Applications, ICIMIA 2020 - Conference Proceedings.

doi:10.1109/ICIMIA48430.2020.9074859.

Doke, Ashwini; Gaikwad, Madhava. 2021. “Survey on Automated Machine Learning (AutoML)

and Meta learning” 12th International Conference on Computing Communication and

Networking Technologies (ICCCNT). IEEE. doi:10.1109/ICCCNT51525.2021.9579526

Gawalska, Alicja, Natalia Czub, Michał Sapa, Marcin Kołaczkowski, Adam Bucki, and Aleksander

Mendyk. 2023. “Application of Automated Machine Learning in the Identification of Multi-

Target-Directed Ligands Blocking PDE4B, PDE8A, and TRPA1 with Potential Use in the

Treatment of Asthma and COPD.” Molecular Informatics 42 (7).

doi:10.1002/minf.202200214.

Groves, William, and Maria Gini. 2013. “Improving Prediction in TAC SCM by Integrating

Multivariate and Temporal Aspects via PLS Regression.” In Lecture Notes in Business

Information Processing. Vol. 119 LNBIP. doi:10.1007/978-3-642-34889-1_3.

132

Hatzikos, Evaggelos V., Grigorios Tsoumakas, George Tzanis, Nick Bassiliades, and Ioannis

Vlahavas. 2008. “An Empirical Study on Sea Water Quality Prediction.” Knowledge-Based

Systems 21 (6). doi:10.1016/j.knosys.2008.03.005.

Karalič, Aram, and Ivan Bratko. 1997. “First Order Regression.” Machine Learning 26 (2–3).

doi:10.1023/a:1007365207130.

Krauß, J.; Pacheco, B. M.; Zang, H. M.; Schmitt, R.H.. 2020. “Automated machine learning for

predictive quality in production” Procedia CIRP. doi: 10.1016/j.procir.2020.04.039.

Majid, H., S. Anuar, and N.H. Hassan. 2023. “TPOT-MTR: A Multiple Target Regression Based

on Genetic Algorithm of Automated Machine Learning Systems.” Journal of Advanced

Research in Applied Sciences and Engineering Technology 30 (3).

doi:10.37934/araset.30.3.104126.

Petković, Matej, Dragi Kocev, and Sašo Džeroski. 2020. “Feature Ranking for Multi-Target

Regression.” Machine Learning 109 (6). doi:10.1007/s10994-019-05829-8.

Rodríguez, Juan J., Mario Juez-Gil, Carlos López-Nozal, and Álvar Arnaiz-González. 2022a.

“Rotation Forest for Multi-Target Regression.” International Journal of Machine Learning and

Cybernetics 13 (2). doi:10.1007/s13042-021-01329-1.

———. 2022b. “Rotation Forest for Multi-Target Regression.” International Journal of Machine

Learning and Cybernetics 13 (2). doi:10.1007/s13042-021-01329-1.

Spyromitros-Xioufis, Eleftherios, Grigorios Tsoumakas, William Groves, and Ioannis Vlahavas.

2016. “Multi-Target Regression via Input Space Expansion: Treating Targets as Inputs.”

Machine Learning 104 (1). Springer New York LLC: 55–98. doi:10.1007/s10994-016-5546-

z.

Swan, Andy. 1998. “ G OOVAERTS , P. 1997. Geostatistics for Natural Resources Evaluation .

Applied Geostatistics Series. Xiv + 483 Pp. New York, Oxford: Oxford University Press. Price

£46.95 (Hard Covers). ISBN 0 19 511538 4. .” Geological Magazine 135 (6).

doi:10.1017/s0016756898631502.

Tsanas, Athanasios, and Angeliki Xifara. 2012. “Accurate Quantitative Estimation of Energy

Performance of Residential Buildings Using Statistical Machine Learning Tools.” Energy and

Buildings 49. doi:10.1016/j.enbuild.2012.03.003.

133

Yeh, I. Cheng. 2007. “Modeling Slump Flow of Concrete Using Second-Order Regressions and

Artificial Neural Networks.” Cement and Concrete Composites 29 (6).

doi:10.1016/j.cemconcomp.2007.02.001.

