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Abstract – Native multi-output expands its capabilities to include multi-target regression using a genetic programming 

approach. It outperforms state-of-the-art methods on multi-target regression datasets, enhancing prediction accuracy and 

decision-making in multi-target regression domains. However, it relies heavily on a single target strategy, which may not 

capture complex interdependencies between multiple targets. Additionally, the systems lack understanding of how linked targets 

in multi-target regression are handled, making it difficult for practitioners to determine the real connections. The purpose of 

this study is to evaluate and assess the Native Multi-Output, Regressor Chain and TPOT-MTR model using six relevant public 

datasets. The methods used were Pearson Correlation and aRRMSE. The research focuses on multi-target regression using 

AutoML and TPOT, focusing on the TPOT multi-output regression technique. The proposed model is expected to improve 

correlation and provide customization options, contributing to the advancement of multi-target regression using AutoML 

techniques. It concludes with a comprehensive analysis of the algorithm’s performance in addressing difficulties in multiple 

target regression and evaluating its ability to identify and employ relevant features for improved predictive correlation. The 

results show that TPOT-MTR shows stronger correlation performance across most datasets, especially when target relationship 

capture is vital. However, its performance advantage is reduced in datasets with weakly connected or naturally well-structured 

targets. In conclusion, TPOT-MTR is a reliable tool for modelling target correlations, especially in multi-target learning tasks. 

Its performance varies depending on the dataset structure, with Regressor Chain and Native Multi-Output performing better in 

densely linked datasets. However, it may not always provide the lowest aRRMSE, making it a good substitute for simpler 

models. Further research can explore more intricate datasets and integrate neural networks. 
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1.0 Introduction 

Machine learning has made significant progress in recent years, with Automated Machine Learning 

(AutoML) being a significant achievement in the field. AutoML has shown advantages in 

applications like multi-target regression (MTR), which involves simultaneously predicting 

numerous interconnected output variables. However, the challenge in MTR is effectively handling 

the relationship between target variables. Conventional methods often fail to consider the specific 

relationships between each objective, leading to less optimal performance and erroneous forecasts. 

AutoML offers a solution by using automation to investigate various models and 

configurations, minimizing manual labour and ensuring models are fine-tuned to the unique 

attributes of the data. The Tree-based Pipeline Optimization Tool (TPOT) has shown significant 

potential in AutoML, focusing on classification problems and genetic programming to create 

machine-learning pipelines for maximum accuracy. Researchers have expanded TPOT to tackle 

multi-target regression, creating TPOT-MTR, which uses genetic programming techniques to 

optimize the entire data preparation pipeline, feature selection, and model training for MTR 

problems, focusing on handling target correlations. 

AutoML is a machine-learning technique used for multi-target regression but doesn’t 

evaluate individual correlations between targets. This gap in correlation issues between targets will 

cause poor relationships among them and result in less accuracy and performance. Therefore, the 

proposed TPOT-MTR method combines optimization algorithms and pipeline designs specifically 

for multi-target regression to address this issue. This innovative approach aims to deliver 

competitive performance and respect fundamental relationships among targets by considering 

complex interactions between output variables. TPOT-MTR aims to provide a highly effective 

solution for complex predictive modelling tasks that require multi-target regression, generating 

sophisticated and dependable data-driven insights across various fields. This paper presents a 

comparative analysis of multiple methods, including TPOT-MTR, ERC-SVR, and native multi-

output, to provide a better understanding of correlation solutions between targets using different 

techniques.  

Three distinct objectives are established to guide the research effort. These objectives drive 

the focus and provide a holistic account of multi-target regression using AutoML issues based on 

the genetic algorithm, relating them to performance-related problems. The following is a summary 

of the research objectives to ensure that they will be the focus. They are as follows:    
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a) To conduct a comparative analysis of native multi-output, regressor chain and 

TPOT-MTR using six public datasets. 

b) To highlight key points of performance metrics from multiple methods using six 

public datasets. 

c) To evaluate and assess the method of TPOT-MTR, ERC-SVR and native multi-

output model using six public datasets. 

 

This research focuses specifically on multi-target regression using AutoML, particularly on 

the TPOT multi-output regression technique. The study aims to describe the trained model of multi-

target regression using AutoML and TPOT, a supervised machine learning technique. The intention 

is to provide a clear understanding of the proposed multi-target regression model and its potential 

benefits for application users in improving their applications’ availability. To maintain a clear focus 

on the research objectives, this study excludes the exploration of other regular machine learning 

(ML) systems and their features and implementation models.  

ML systems’ architectural and workflow aspects are also out of scope and will not be 

discussed in detail. The primary goal is to propose a multi-target regression model using AutoML 

and TPOT rather than delving into technical aspects related to the architecture and programming 

of regular ML systems. The research will specifically investigate the utilization of multi-target 

regression within the AutoML TPOT framework, which is based on a genetic algorithm system. 

The output of the proposed model is expected to benefit users by improving accuracy and providing 

the flexibility to customize the model according to their application preferences. Focusing on the 

multi-target regression model in AutoML TPOT, this research aims to provide insights and a 

foundation for future improvements in multi-target regression using AutoML techniques.  

Overall, the research scope centers on describing and analyzing a trained multi-target 

regression model using AutoML based on the TPOT technique. The focus is on understanding the 

potential benefits of this model for application users, improving accuracy, and providing 

customization options. The research aims to contribute to advancing multi-target regression within 

the AutoML domain, specifically in the context of TPOT and genetic algorithms.  

The current level of multi-target regression can be found using regular machine learning 

algorithms. Regression problems, called multi-output or multi-target regression, aim to predict 

several continuous target variables. The complexity of the issue, the amount and quality of the 
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dataset, the selection of algorithm and hyperparameters, and the evaluation measure employed all 

affect the degree of performance for multi-target regression. 

The strength of this research lies in the proposed model, which facilitates AutoML, and this 

model will be justified in ensuring the effectiveness of the regression model. The proposed model 

has several advantages, including greater accuracy and efficiency in error-rated metrics. This will 

help analysts to: 

• Make a good prediction because this proposed model facilitates the AutoML with multi-

target regression. 

• Chances of rechecking the hyperparameter to tune up the efficiency and accuracy based 

on the dataset. 

• Mitigate potential harmful effects of unexpected issues on a running pipeline. 

   

In developing the model process, gaps will inevitably be bridged by focusing on multi-

target regression using AutoML-TPOT and making recommendations to further improve and 

achieve optimal accuracy in managing efficiency, which is the significance of the research. The 

significance of this study is demonstrated by the evaluation of the proposed model, which benefits 

and provides value-added to the multi-target regression mechanism in AutoML-TPOT, specifically 

based on the genetic programming AutoML system. The prediction-trained model can initiate the 

following action to make a prediction and inadvertently provide an early warning signal to any 

proposed systems, thereby preventing unwanted events.  

 

1.1 Study Gap  

Current AutoML systems are designed for single-target strategy, and current multi-target regression 

challenges the correlation between targets. TPOT-MTR, an AutoML system, addresses this by 

expanding its capabilities of correlating between targets to include multi-target regression. Using a 

genetic programming approach, TPOT-MTR finds the optimal mix of machine learning algorithms 

and hyperparameters for multi-target regression tasks. It outperforms state-of-the-art methods on 

various multi-target regression datasets, suggesting its potential to enhance prediction accuracy and 

facilitate decision-making in domains where multi-target regression is common.  

 Many steps have been taken to improve multi-target regression by solving association 

problems, but some study gaps still need to be filled. Existing multi-target regression systems, such 
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as native multi-output, focus heavily on the single-target strategy, which may not always capture 

the complex interdependencies between multiple targets effectively. Despite native multi-output 

and regressor chains making predictions more accurate, they do not directly model the statistical 

relationships between linked targets. This means that it might not work well in datasets where target 

factors are strongly dependent on each other.   

Another significant gap is that AutoML systems don’t make it easy to understand how they 

handle linked targets in multi-target regression. There are numerous current methods, such as native 

multi-output and regressor chains, that focus on predictive correlation but don’t demonstrate how 

the goal factors interact with each other. Because of this, it is challenging for practitioners to 

determine if the connections found are genuine or simply errors made by the automatic modelling 

process. Future studies should investigate methods that integrate domain knowledge with advanced 

feature engineering techniques to better handle correlated goals. 

 

2.0 Materials and Methods 

2.1 Automated Machine Learning (AutoML) 

Automated Machine Learning (AutoML) is frequently commended for its capacity to simplify the 

machine-learning process by decreasing the time and expertise necessary to develop and deploy 

models (Chauhan et al., 2020). AutoML endeavours to expedite model development while 

minimizing human intervention by deconstructing the conventional machine-learning pipeline into 

smaller automated modules. Nevertheless, this automation has drawbacks, notably in complex data 

preprocessing and feature engineering, which necessitate domain-specific expertise despite its 

efficiency. Additionally, the quality and nature of the input data are critical factors in the efficacy 

of AutoML tools, which can automate model selection, hyperparameter tuning, and optimization. 

This presents a substantial challenge for real-world applications.  

AutoML can open up machine learning to businesses that may not have extensive technical 

expertise, making it easier for them to adopt AI-driven solutions. By streamlining key steps such 

as selecting models and fine-tuning parameters, AutoML accelerates the onboarding process for 

various industries, making it easier for anyone to engage with machine learning to address 

problems. AutoML can enhance model correctness by testing multiple model designs; however, its 

automated nature may lead to suboptimal selections if not closely monitored. User-friendliness and 

model development control are balanced in fully automated and semi-automated AutoML systems. 
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Fully automated systems reduce human input; however, they may not be flexible enough for 

complex jobs. Semi-automated solutions offer more flexibility but need expertise, making them 

less accessible to non-experts.  

Although AutoML appears to be a viable approach to operationalizing machine learning 

tools on a broader scale, it still has a long way to go before it can be practically applied. A study 

by Krauß et al. (2020) discusses the challenges of incorporating AutoML into production 

environments and its performance, which is still not as effective as that of data science specialists. 

AutoML can handle some crucial steps in the machine learning process, like data preparation, 

modelling, deployment, and integration. But it’s not flexible enough for complicated tasks because 

it can’t adapt to different domains. It doesn’t work well in situations like independent learning and 

reinforcement learning, where human help is still needed. AutoML also struggles with high-

dimensional and diverse data, which is a common issue in real-world applications. This indicates 

that it requires further improvements to be more easily understood, scalable, and overall better. 

A study by Krauß et al. (2020)   also highlights the potential and limitations of AutoML 

while comparing it to human data science experience. It critically examines the factors influencing 

the success of ML projects in production. Data integration, modelling, and deployment are only a 

few of the ML pipeline processes that AutoML automates. However, the effectiveness of AutoML 

still relies heavily on the skill and judgment of production experts. A significant obstacle noted is 

the lack of agreement on the best method for assessing AutoML systems, as their effectiveness 

depends much on usability, toolkit breadth, and domain expertise. By grouping AutoML 

stakeholders into academic, business, and data preparation categories, the scattered nature of 

AutoML adoption is highlighted, and various user groups are suggested to prioritize different 

needs. AutoML is limited, even though it has great potential to increase the output of ML projects. 

It cannot entirely replace human decision-making, especially in jobs that require sophisticated 

knowledge of industry-specific needs. 

Automated Machine Learning (AutoML) and Metalearning are emerging fields that aim to 

reduce human reliance on machine learning models. They have a long way to go. AutoML 

automatically searches for neural architectures to speed up model creation, but it can’t handle 

complex, domain-specific tasks; therefore, it’s only suitable for typical datasets. On the other hand, 

meta-learning enhances learning speed by leveraging information from multiple datasets. However, 

it remains challenging to apply in real-life scenarios because it requires substantial computing 
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power and exhibits issues with generalization. A study by Doke and Gaikwad (2021) discusses the 

ongoing efforts to integrate these two methodologies, demonstrating the potential for enhanced 

automation. AutoML asserts that it will reduce the necessity for data scientists; however, domain 

knowledge is still required to ensure that machine learning applications are comprehensible and 

dependable. This is remarkably accurate in the actual world, where the complexity and variability 

of data present significant challenges. 

However, not all machine learning issues can be solved with AutoML. Machine learning 

practitioners’ skills and domain knowledge are still crucial for the quality of data used to train 

models and the quality of the models themselves. AutoML systems can boost ML project 

productivity, but application-domain knowledge and domain-specific expertise must be 

incorporated for desired outcomes. 

 

2.2 Multi-Target Regression (MTR) 

A generic data-transformation methodology is suggested for MTR feature ranking, which includes 

two variations of each score. The findings identify the factors that influence the quality of the 

rankings and demonstrate that both groups of approaches yield significant feature rankings. 

Petković et al. (2020) suggest a universal technique for sorting MTR features using RReliefF and 

ensemble-based scoring. The study employs 24 MTR benchmark problems, characterized by 

characteristics ranging from 6 to 576 and objectives ranging from 2 to 16. The instances used in 

the study vary in number from 103 to 60607. The results indicate that the ensemble technique is 

the most suitable for a specific relevance score in ensemble-based feature ranking, and the MTR 

rankings may be compared to their single target (STR) equivalents. 

Using ensembles of regressors, where multiple regression models are trained independently 

on the same input characteristics and their outputs are combined to predict the numerous targets, is 

a widely adopted method for MTR in AutoML. Numerous applications, including the prediction of 

several water quality indices in environmental science, have demonstrated the efficacy of this 

method. For example, forecasting the synthesis of secondary metabolites in fungi (life sciences), 

learning habitat models for a variety of species, and predicting forests are all examples of real-

world problems that may be phrased as MTR tasks (Breskvar & Dzeroski, 2020). 

The article “Multi-Target Regression via Input Space Expansion” by Spyromitros-Xioufis 

et al. (2016)  suggests a novel method for MTR that entails expanding the input feature space to 
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include all potential pairwise interactions between features and then training a single regressor on 

the expanded feature space. Using satellite data to anticipate various environmental factors, the 

authors show how good their method is. 

Previous studies, such as those (Breskvar & Dzeroski, 2020) propose expanding the 

functionality of a method called FIRE for learning multi-target regression rules by incorporating 

random output selections (ROS) into the learning process of tree ensembles. Individual Predictive 

Clustering Trees (PCT)s are limited to analyzing a small subset of the target variables in such 

ensembles. The rules gleaned from the tree ensemble similarly narrow in on specific groups of the 

dependent variables (FIRE-ROS). 

The latest research highlights the substantial influence of TPOT-MTR and other AutoML 

techniques in improving the performance of multi-target regression (MTR) models (Majid, Anuar, 

and Hassan, 2023). By efficiently capturing the interconnections among the variables of interest, 

these methods can generate more precise and dependable predictions, leading to progress in MTR 

and its practical implementations (Abdallah, Grati, and Boukadi, 2023). The increasing demand 

for advanced predictive models emphasizes the significance of ongoing enhancement and 

advancement of AutoML tools to tackle the difficulties in MTR (Gawalska et al., 2023). Feature 

Ranking in MTR (Petković, Džeroski, & Kocev, 2020) presents a universal MTR feature ranking 

system based on RReliefF and ensemble-based scoring. It has been tested on 24 benchmark sets, 

showing generalizability. It lacks comparison with deep learning methods, which are becoming 

more popular in MTR. Future studies aimed at better performance should investigate neural 

network-driven feature ranking. 

Environmental and biological sciences extensively apply multi-target regression, as shown 

in Breskvar and Dzeroski (2020). It forecasts forest models, species habitats, and water quality 

metrics. AutoML finds high-dimensional, sparse, or unbalanced data challenging. The black-box 

character of ensemble models lowers interpretability and calls for explainable artificial intelligence 

techniques in terms of expanding features and alternative MTR techniques. 

 Input feature space extension suggested by Spyromitros-Xioufis et al. (2016) would help 

MTR performance. The drawback is that computational cost rises dramatically, and huge datasets 

cannot be viable. The FIRE-ROS approach (Breskvar & Dzeroski, 2020) restricts the number of 

target variables investigated while nevertheless helping to reduce complexity. Although further 
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study should focus on balancing accuracy, efficiency, and scalability, TPOT-MTR (Majid, Anuar, 

& Hassan, 2023) and AutoML approaches show some potential to address this issue. 

 

2.3 Dataset 

The datasets utilized in the experiments are concisely presented below.  

 

2.3.1. Jura  

The Jura (Swan, 1998) database contains measurements of 7 heavy metals: chromium, nickel, 

cadmium, zinc, cobalt, lead, and copper. These measurements are taken at 359 distinct locations 

within a specific region in Switzerland. Each area is assessed for its land usage, including meadow, 

forest, tillage, pasture, and the type of rock present, such as Quaternary, Argovian, Portlandian, 

Sequanian, or Kimmeridgian. In a multi-target regression context, the objective is to forecast the 

concentration of higher-value metals, which are regarded as the main variables, based on the 

measurements of lower-value metals used as input variables. This study examines copper, lead, and 

cadmium as the major focus, but all other metals, land usage type, rock type, and location, are used 

as predictive inputs.  

 

2.3.2. Slump  

The concrete slump database (Yeh, 2007) predicts three attributes of concrete: flow, slump, and 

compressive strength. These attributes are considered dependent vector variables and are 

influenced by seven concrete components: blast furnace slag, superplasticizer, cement, water, fly 

ash, fine aggregate, and coarse aggregate.  

 

2.3.3. Andro  

Andro database (Hatzikos et al., 2008) focuses on predicting six future water quality parameters in 

Thessaloniki, Greece: oxygen levels, pH, temperature, salinity, turbidity, and conductivity. The 

target variable records are acquired from subaquatic sensors with a sample interval of nine seconds. 

The measurements are averaged to derive a single record for each variable per day. The typically 

utilized database is constructed by employing a five-day time window. The attributes pertain to six 

water quality measurements taken up to five days prior, with a time lag of five days. In other words, 

the expected values for each variable for the next six days are determined.  
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2.3.4. Electrical Discharge Machining (EDM)  

The Electrical Discharge Machining database (Karalič and Bratko, 1997) is used for a regression 

job with two outcome variables. This dataset aims to enhance the machining speed by imitating the 

behaviours of a human operator who oversees two output responses. The output can have three 

distinct numeric values: -1, 0, or 1. There are sixteen continuous input features available.  

 

2.3.5. ENB  

The Energy Building database (Tsanas and Xifara, 2012) focuses on addressing the issue of energy 

efficiency by forecasting the heating and cooling load requirements of buildings based on eight 

characteristics, including roof area, total height, and glazing area, among others.  

 

2.3.6. SCM20d 

The code SCM20d refers to the supply chain management database compiled from the Trading 

Agent Competition in the supply chain management competition. The data pretreatment and 

normalization techniques are explained in depth in reference (Groves and Gini, 2013). The 

SCM20d dataset pertains to the forecast of the “Product Future” category. Each row in the dataset 

corresponds to a single day of observation in the tournament, which spans 220 days and consists 

of eighteen games. The input characteristics represent the recorded prices for a single day in the 

event. Furthermore, four samples with a time delay are included for each observed component and 

product to aid in predicting the current trends. The SCM20d dataset provides the average price for 

each commodity over twenty consecutive days. 

 

 

3.0 Methodological Steps 

The methodological steps will be explained in three steps: selecting the data sources, preparing the 

chosen model, and lastly, model assessment. 

 

Step 1: Selecting the Data Sources and Approaches 

The first stage is finding and choosing pertinent data sources from six  public datasets utilized for 

the analysis. The data’s quality, dependability, and completeness must be carefully evaluated to 
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ensure its fit for the research. Ensuring that the dataset is used in current and past studies is also 

important to compare its results. We also consider data availability, ethical issues, and congruence 

with the study goals. Organizing and preprocessing the data for additional examination comes next 

after the data sources are complete. 

 

Step 2: Preparation of the Selected Model 

Once the data sources and methods of approach have been chosen, the model ready for analysis 

must be developed. Data cleansing, addressing missing values, and variable transformation to 

guarantee they are in the right shape for modelling are among these aspects. After that, the model 

parameters are chosen based on empirical results or theoretical frameworks; they remain constant 

across several methods, ensuring their accurate depiction of the topic under examination. 

Furthermore, features engineering and data normalizing techniques might be used to enhance the 

model’s prediction performance. Finally, the model is trained on the chosen dataset, and the first 

validation is performed to evaluate its preliminary performance. 
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 The pseudocode for the initial deployment without TPOT and the predicted function are 

illustrated in Figure 1. The deployment of the iterative algorithm during this phase is the primary 

objective, as it is designed to continue perusing the next target of outputs. However, external 

elements should not disrupt this phase, as this will increase the algorithm’s complexity and the 

number of challenges. The algorithm’s fundamental structure, including the definition of pipeline 

fitting classes, should be sufficient. The subsequent phase involves the development of a 

pseudocode that is both TPOT-enabled and does not include the predict function, as illustrated in 

BEGIN   
    # Define MultiOutputTP class   
    CLASS MultiOutputTP:   
        FUNCTION __init__(self, *args,  kwargs):   
            self.args ← args   
            self.kwargs ← kwargs   
 
        FUNCTION fit(self, X, y):   
            # Ensure X and y are 2D arrays   
            Convert X, y to 2D format   
             
            # Ensure X and y have the same number of 
rows   
            IF number_of_rows(X) ≠ number_of_rows(y):   
                THROW ERROR   
     
            # Determine number of target variables (yy)   
            yy ← number_of_columns(y)   
             
            # Initialize empty list for regressors   
            self.regs ← [ ]   
             
            RETURN self   
 
END   

 

BEGIN   
    # Define MultiOutputTP class   
    CLASS MultiOutputTP:   
        FUNCTION __init__(self, *args,  kwargs):   
            self.args ← args   
            self.kwargs ← kwargs   
 
        FUNCTION fit(self, X, y):   
            # Ensure X and y are 2D arrays   
            Convert X, y to 2D format   
             
            # Ensure X and y have the same number of 
rows   
            IF number_of_rows(X) ≠ number_of_rows(y):   
                THROW ERROR   
     
            # Determine number of target variables (yy)   
            yy ← number_of_columns(y)   
             
            # Initialize empty list for regressors   
            self.regs ← [ ]   
             
            # Train individual TPOTRegressor models 
for each target   
            FOR i FROM 0 TO yy - 1:   
                Define REG as TPOTRegressor with:   
                    generations = 5   
                    population_size = 50   
                    verbosity = 2   
                    random_state = 123   
                    max_time_mins = None   
                    max_eval_time_mins = 5   
                    cv = 10   
                    scoring = 'neg_mean_squared_error'  
                # Prepare training data for target i   
                Xi ← concatenate(X with first i columns of 
y)   
                yi ← column i of y   
 
                # Fit the model and store it   
                Append REG.fit(Xi, yi) to self.regs   
             
            RETURN self   
END   

 

BEGIN   
    # Define MultiOutputTP class   
    CLASS MultiOutputTP:   
        FUNCTION __init__(self, *args,  kwargs):   
            self.args ← args   
            self.kwargs ← kwargs   
 
        FUNCTION fit(self, X, y):   
            # Ensure X and y are 2D arrays   
            Convert X, y to 2D format   
             
            # Ensure X and y have the same number of 
rows   
            IF number_of_rows(X) ≠ number_of_rows(y):   
                THROW ERROR   
     
            # Determine number of target variables (yy)   
            yy ← number_of_columns(y)   
             
            # Initialize empty list for regressors   
            self.regs ← [ ]   
             
            # Train individual TPOTRegressor models 
for each target   
            FOR i FROM 0 TO yy - 1:   
                Define REG as TPOTRegressor with:   
                    generations = 5   
                    population_size = 50   
                    verbosity = 2   
                    random_state = 123   
                    max_time_mins = None   
                    max_eval_time_mins = 5   
                    cv = 10   
                    scoring = 'neg_mean_squared_error'  
                # Prepare training data for target i   
                Xi ← concatenate(X with first i columns of 
y)   
                yi ← column i of y   
 
                # Fit the model and store it   
                Append REG.fit(Xi, yi) to self.regs   
             
            RETURN self   
 
        FUNCTION predict(self, X):   
            # Initialize output array for predictions   
            Define y as empty matrix with dimensions 
(X.shape[0], length(self.regs))   
            # Generate predictions for each target 
variable   
            FOR i, REG in enumerate(self.regs):   
                y[:, i] ← REG.predict(concatenate(X with 
first i columns of y))   
       
            RETURN y   
    # Instantiate MultiOutputTP and train model   
    Define REG2 as MultiOutputTP(1)   
    Fit REG2 on (X_train, y_train)   
 
    # Make predictions   
    Define YPRED2 as REG2.predict(X_test)   
 
END   

 

Figure 1: Pseudocode for Initial 

Deployment without TPOT and 

Predict Function 

Figure 2: Pseudocode with TPOT 

and without Predict Function 

Figure 2: Pseudocode with TPOT 

and Predict Function 
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Figure 2. The primary objective of the deployment during this phase was to incorporate TPOT into 

the algorithm. 

Furthermore, the appropriate hyperparameter was selected and incorporated into the 

pipelines. The fitting algorithm was manually tested several times to determine the most suitable 

parameters for the datasets. The pseudocode with TPOT, which includes the predict function, is 

illustrated in Figure 3 to provide a more comprehensive understanding of the results. This phase 

should be exhaustive, incorporating all aspects of multi-target regression. The prediction result can 

also be transferred to the subsequent step, model assessment. It includes and selects all pertinent 

metrics for the evaluation. 

 

Step 3: Model Assessment 

Once the model is prepared, it undergoes rigorous assessment to determine its effectiveness and 

reliability. Various performance metrics, including mean absolute correlation, average relative root 

mean square error (aRRMSE), and a Pearson Correlation Heatmap, are used to evaluate the model’s 

predictive capability. Cross-validation techniques will be applied to ensure the model generalizes 

well to new data and is not overfitting. Additionally, sensitivity analysis can be conducted to 

examine how variations in input data impact model outcomes. Based on the assessment results, 

necessary adjustments will be made to improve the model before its final implementation. 

 

3.1 Methods 

The instrumentation consists of the tools, frameworks, and techniques used to implement and 

evaluate the machine learning models. The study utilized publicly available benchmark datasets, 

including those from the UCI Machine Learning Repository and Kaggle. Preprocessing tools, such 

as Pandas, NumPy, and Scikit-learn, were used to clean, normalize, and split the dataset into 

training and testing sets. 

Scikit-learn was  used to develop and implement different machine learning models. Algorithms to 

be compared may include supervised models (Decision Trees, Random Forest, SVM, Neural 

Networks) and unsupervised models (PCA). Performance was  measured using standard evaluation 

metrics such as aRRMSE and Mean Absolute Correlation, depending on the type of machine 

learning task. Cross-validation techniques such as k-fold cross-validation will be applied to ensure 

robustness and generalizability. Statistical tools such as Pearson Correlation Analysis may be used 
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to determine significant differences between models. Visualization tools like Matplotlib and 

Seaborn will be used to represent results graphically. 

 

The study's design and instrumentation framework ensure a systematic and objective 

comparison of different machine-learning approaches while maintaining reproducibility and 

reliability in the findings. Table 1 below presents the pseudocode for the native multi-output 

regressor chain and TPOT-MTR, which are also part of the selected model’s preparation. Native 

multi-output and regressor chains are the existing multi-target regression library retrieved from the 

scikit-learn, which is also widely used in multi-target regression models. To compare, the proposed 

TPOT-MTR, as shown in the figure below, utilizes the current TPOT library but is enhanced with 

a multi-target wrapper, differing from the current native multi-output and regressor chain. The table 

below outlines the key points regarding the three approaches to simplify the differences.  

 

Table 1: Comparison Table Between Native Multi-Output, Regressor Chain and TPOT-MTR 

Feature MultiOutputRegressor RegressorChain 

TPOT-MTR (Multi-

Target Regression with 

TPOT) 

Modelling Targets 
Independent models 

for each target 

Sequential models with 

dependencies 

Sequential models with 

automated feature 

selection & 

optimization 

Workflow Parallel Sequential 

Sequential with 

automated pipeline 

tuning 

Interdependency Ignores relationships Model’s relationships 

Model’s relationships 

dynamically using 

genetic algorithms 

Speed 
Faster (no 

dependencies) 

Slower (sequential 

nature) 

Slower due to 

automated model 

selection & 

hyperparameter tuning 

Error Propagation None Possible 

Possible but mitigated 

through adaptive 

optimization 

Scalability 
Scales well for many 

targets 

May struggle with 

many targets 

Handles many targets 

but may be 

computationally 

expensive 
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 Figure 4 below shows pseudocode for a native multi-output design, intended as an 

automated machine learning (AutoML) tool that utilizes evolutionary algorithms to optimize model 

selection and hyperparameter tuning; the Multi-Output Regressor wraps the TPOT Regressor. 

Negative mean squared error (neg_MSE) is the evaluation metric; the model achieves strong 

performance using a 10-fold cross-validation (cv=10). A TransformedTargetRegressor manages 

target variable transformations, guaranteeing appropriate scaling of y_train and y_pred. Once 

trained, the model produces predictions for X_test from X_train and y_training. For challenging 

multi-target regression projects, this method combines the adaptability of multi-output regression 

with the force of automated model tweaking. 

 Starting with TPOT as the basic model, the Regressor Chain method, as shown below in 

Figure 5, ignores minor mistakes within a specified margin using epsilon-insensitive loss. Its dual-

mode operation guarantees the best performance, and a high repetition limit helps to achieve 

appropriate convergence. After that, the RegressorChain uses a sequential modelling method 

wherein an order of [0,1,2] chains forecasts together. This implies that every target variable is 

expected one after the other, with each next target including the forecast of the prior target as a 

BEGIN   
    # Initialize a multi-output regressor with TPOTRegressor 
    Define RFG as MultiOutputRegressor( 
        TPOTRegressor with parameters: 
            generations = 5 
            population_size = 50 
            verbosity = 2 
            random_state = 123 
            n_jobs = 1 
            max_time_mins = None 
            max_eval_time_mins = 5 
            cv = 10 
            scoring = 'neg_mean_squared_error' 
    )   
 
    # Create a TransformedTargetRegressor with target transformation   
    Define MODEL as TransformedTargetRegressor( 
        regressor = RFG 
        transformer = target_transformer 
    )   
 
    # Fit the model to the training data   
    MODEL = RFG.fit(X_train, y_train)   
 
    # Make predictions on the test set   
    Y_PRED = MODEL.predict(X_test)   
 
END 

Figure 4: Pseudocode for Native Multi Output 
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supplementary element. A TransformedTargetRegressor scales y_train and y_pred2 to ensure the 

target variables are appropriately converted. Finally, the model is trained using X_train and y_train, 

and the structural relationships between target variables generate predictions for the X_test. 

 

 The custom multi-output regression method TPOT-MTR (Multi-Output TPOT Regressor), 

as shown in Figure 6 below, trains independent TPOT Regressor models for each target variable. 

By traversing all target variables and training separate models, the Multi-OutputTP class is 

designed to handle this procedure. The approach guarantees that X and y are in 2D format 

throughout the fit step. It then runs over every column of y, adding previously handled target 

columns (y[:, :i] to augment the input X. For every target variable, a separate TPOTRegressor is 

trained; the trained models are kept on hand for future use.  

The prediction method starts an empty matrix to hold forecasts. The approach iteratively 

forecasts each goal sequentially among the trained models. Previously projected values (y[:, :i]) 

are used as extra characteristics for further predictions, guaranteeing a structured link between 

target variables. Finally, a multi-transfer learning example called reg2 is developed and trained on 

BEGIN 
# Define the base regressor as LinearSVR 
Define REG2 as LinearSVR with parameters: 
epsilon = 0.0 
tol = 0.0001 
C = 1.0 
loss = 'epsilon_insensitive' 
fit_intercept = True 
intercept_scaling = 1.0 
dual = True 
verbose = 2 
random_state = None 
max_iter = 100000000 
 
# Initialize RegressorChain using LinearSVR as the base estimator 
Define CHAIN as RegressorChain( 
base_estimator = REG2 
order = [0,1,2] 
) 
 
# Fit the regressor chain model to the training data 
CHAIN.fit(X_train, y_train) 
 
# Create a TransformedTargetRegressor with target transformation 
Define MODEL as TransformedTargetRegressor( 
regressor = CHAIN 
transformer = target_transformer 
) 
 
# Train the transformed model on the training data 
MODEL.fit(X_train, y_train) 
 
# Make predictions on the test set 
Y_PRED2 = MODEL.predict(X_test) 
 
END 

Figure 12-1: Pseudocode for Regressor Chain Figure 2-2:Pseudocode for Regressor Chain Figure 5: Pseudocode for Regressor Chain 
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X_train and y_training. Leveraging the learnt relationships across several target variables, it 

provides predictions for X_test once trained. 

 

4.0 Results and Discussion 

The results for six datasets are explained further, including error metrics such as Mean Absolute 

Correlation and aRRMSE.  

BEGIN   
    # Define MultiOutputTP class   
    CLASS MultiOutputTP:   
        FUNCTION __init__(self, *args,  kwargs):   
            self.args ← args   
            self.kwargs ← kwargs   
 
        FUNCTION fit(self, X, y):   
            # Ensure X and y are 2D arrays   
            Convert X, y to 2D format   
             
            # Ensure X and y have the same number of rows   
            IF number_of_rows(X) ≠ number_of_rows(y):   
                THROW ERROR   
     
            # Determine number of target variables (yy)   
            yy ← number_of_columns(y)   
             
            # Initialize empty list for regressors   
            self.regs ← []   
             
            # Train individual TPOTRegressor models for each target   
            FOR i FROM 0 TO yy - 1:   
                Define REG as TPOTRegressor with:   
                    generations = 5   
                    population_size = 50   
                    verbosity = 2   
                    random_state = 123   
                    max_time_mins = None   
                    max_eval_time_mins = 5   
                    cv = 10   
                    scoring = 'neg_mean_squared_error'  
                # Prepare training data for target i   
                Xi ← concatenate(X with first i columns of y)   
                yi ← column i of y   
 
                # Fit the model and store it   
                Append REG.fit(Xi, yi) to self.regs   
             
            RETURN self   
 
        FUNCTION predict(self, X):   
            # Initialize output array for predictions   
            Define y as empty matrix with dimensions (X.shape[0], length(self.regs))   
            # Generate predictions for each target variable   
            FOR i, REG in enumerate(self.regs):   
                y[:, i] ← REG.predict(concatenate(X with first i columns of y))   
       
            RETURN y   
    # Instantiate MultiOutputTP and train model   
    Define REG2 as MultiOutputTP(1)   
    Fit REG2 on (X_train, y_train)   
 
    # Make predictions   
    Define YPRED2 as REG2.predict(X_test)   
 
END   

Figure 6: Pseudocode for TPOT-MTR 
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Table 2: Mean Absolute Correlation Result for Six Datasets 

Dataset 

Name 

Native Multi 

Output 

Regressor 

Chain 

TPOT-

MTR 

Jura 0.658 

 

0.775 

 
0.815 

Slump 0.546 
0.593 

 
0.580 

Andro 0.535 0.525 0.511 

EDM 
0.510 

 

0.602 

 
0.633 

ENB 
0.990 

 
0.992 0.994 

SCM20D 0.649 0.666 0.681 

 

Table 2, which presents the Mean Absolute Correlation findings, provides information on the 

degree of link capture between various target variables across six datasets using each technique. 

Stronger interdependencies across targets, as indicated by a higher mean absolute correlation value, 

suggest a more effective modelling strategy for capturing these interactions. TPOT-MTR regularly 

gets the most outstanding correlation values across all datasets, proving its efficacy in modelling 

target connections. For the Jura dataset, TPOT-MTR, for instance, obtains a mean absolute 

correlation of 0.815, surpassing both Native Multi-Output (0.658) and Regressor Chain (0.775). 

This trend is also shown in the EDM dataset. TPOT-MTR achieves 0.633, compared to Regressor 

Chain (0.602) and Native Multi-Output (0.510), indicating its ability to capture interdependence 

among multiple target variables more effectively.   

 

  Not all datasets, nevertheless, demonstrate a notable benefit for TPOT-MTR*. While in the 

Andro dataset, Native Multi-Level leads marginally (0.535) over Regressor Chain (0. 525), 

Regressor Chain performs better in the Slump dataset, 0.593 against 0.580. These results imply 

that the advantages of TPOT-MTR may be less noticeable in datasets with smaller target 

interdependencies. All three techniques perform similarly for datasets with extremely high 

correlations, including ENB; TPOT-MTR (0.994) shows only a nominal advantage over Regressor 

Chain (0.992) and Native Multi-Output (0.990). This implies that model selection may not 

significantly impact performance when target variables are highly correlated.   
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  TPOT-MTR performs better across most datasets, especially when target relationship 

capture is vital. Its performance advantage, however, diminishes in datasets where targets are either 

weakly connected or naturally well-structured, suggesting that the optimal approach may depend 

on the type of dataset rather than a one-size-fits-all solution. 

 

Table 3: aRRMSE Result Using Three Different Approaches 

Dataset Name Native Multi Output Regressor Chain  TPOT-MTR 

Jura  0.020 0.021 0.052 

Slump  0.019 0.021 0.051 

Andro  0.017 0.010 0.012 

EDM  0.120 0.112 0.149 

ENB  0.001 0.003 0.007 

SCM20D  0.000 0.000 0.001 

 
 

Table 3 shows the aRRMSE result for six datasets using three approaches. Regressor Chain 

has the lowest ARRMSE (0.010), followed by TPOT-MTR (0.012) and finally, Native Multi-

Output (0.017) for the Andro dataset. Here, TPOT-MTR performs well, almost matching the 

Regressor Chain and well above the Native Multi-Tracker.  This implies that TPOT-MTR gains by 

modelling interactions between targets, making it more competitive in datasets with output 

dependencies. Regressor Chain (0.112) performs the best in the EDM dataset; Native Multi-Output 

(0.120) follows, with TPOT-MTR earning the most significant error (0.149). This suggests that 

TPOT-MTR suffers in this dataset because its evolutionary optimization technique does not 

adequately capture the fundamental linkages. 

 

  Native multi-output routinely gets the best results (0.001 and 0.000, respectively) for 

datasets with very low ARRMSE values, including ENB and SCM20D. TPOT-MTR remains 

competitive (0.007 and 0.001), even though it lags somewhat. These results demonstrate that all 

three approaches achieve nearly ideal performance when the dataset structure allows for highly 

accurate predictions. Even if TPOT-MTR does not get the lowest ARRMSE, overall, it stays 

competitive across datasets. In situations like Andro, where it beats Native Multi-Order and closely 

follows the Regressor Chain, its performance is very noteworthy. On datasets like EDM, where 

conventional techniques excel, TPOT-MTR’s evolutionary approach may struggle to match their 
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accuracy. Notwithstanding these differences, TPOT-MTR appears to be a suitable alternative in 

several situations, particularly for complex target interactions. 

 

5.0 Conclusion 

On performance, the ARRMSE results show another view, nevertheless. Although TPOT-MTR 

remains competitive in some situations, it does not consistently yield the lowest error. TPOT-MTR 

has the highest ARRMSE (0.149) in datasets such as EDM; Regressor Chain (0.112) and Native 

Multi-Output (0.120) perform better here. This suggests that TPOT-MTR’s evolutionary 

optimization strategy may occasionally fail to achieve optimal performance in datasets where 

simpler models can effectively represent the target-output connections. Still, TPOT-MTR is a good 

substitute, mainly when information on target correlations is more crucial than the lowest possible 

error.   

  Additionally significant is the fact that the efficacy of TPOT-MTR varies depending on the 

dataset structure. With TPOT-MTR achieving 0.994 compared to 0.992 (Regressor Chain) and 

0.990 (Native Multi-Output) in datasets with strong natural correlations between targets, such as 

ENB, the performance variations between all three approaches become insignificant. This implies 

that the choice of technique could have little effect on performance in densely linked datasets. On 

the other hand, TPOT-MTR offers no appreciable benefit over the other two methods in datasets 

with less interdependencies, such as Andro (MAC: 0.511) and Slump (MAC: 0.580). These results 

indicate that TPOT-MTR is most suitable for datasets where establishing relationships between 

targets is a priority, rather than solely minimizing prediction errors.   

   TPOT-MTR generally satisfies its goal of offering a solution for modelling target 

correlations; hence, it is beneficial for multi-target learning tasks where knowledge of 

interdependencies is essential. Although it may not always yield the lowest ARRMSE, its ability 

to model complex connections between outputs makes it a valuable tool when conventional 

methods are challenging. The results suggest that selecting the appropriate regression technique 

should depend on the dataset's requirements; if reducing error is the primary goal, Regressor Chain 

or Native Multi-Order may be preferred. However, TPOT-MTR appears to be an effective and 

dependable tool when the goal is to analyze and utilize target correlations for enhanced predictions. 
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