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Abstract – This study aims to develop an algorithm for calculating the column-averaged dry air mole fraction of carbon dioxide 

(XCO2) over peninsular Malaysia using statistical methods. Data from five atmospheric variables consisting of the aerosol 

asymmetry factor (AAF), aerosol optical thickness (AOT), temperature (temperature), water vapor (H2O vapor) and aerosol 

single scattering albedo (SSA) were utilized to develop a predictive XCO2 regression model using multiple linear regression 

(MLR) for examining the impacts of the atmospheric variables on the XCO2. The predictive XCO2 regression model highly 

correlates with atmospheric variables (R2 = 0.68 for Northeast Monsoon and R2 = 0.64 for Southwest Monsoon). The validation 

results show that XCO2 yielded a strong R2 for the Northeast Monsoon and Southwest Monsoon seasons, i.e., 0.84 and 0.83, 

respectively. The proposed regression model exhibited excellent agreement under different monsoon seasons in Peninsular 

Malaysia. 
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1.0 Introduction 

Carbon dioxide (CO2) is an inodorous and transparent gas naturally occurring in our atmosphere. 

CO2 has been recognized as a primary anthropogenic greenhouse gas (GHG) and plays an 

important role in climate change due to an effective thermal infrared (TIR) radiation absorber. It 

contributes up to 70% of global warming (Peters et al., 2011; Olivier et al., 2012). The increased 

presence of GHGs in the atmosphere causes significant problems and threatens the livelihood of 

our society. These gases have been associated with climate change, which has influenced land and 

water resources and food and pasture availability and have caused the disappearance of plants and 

animal species and loss of habitat. 

The global carbon cycle is interconnected between the atmosphere, pedosphere, biosphere, 

geosphere, and hydrosphere (Finlayson-Pitts and Pitts, 1999). Anthropogenic activities such as 

fossil combustion, land use change, cement production, biomass burning and deforestation have 

contributed to atmospheric CO2 over the past two centuries and remain the second largest source 

after the Industrial Revolution (Solomon, 2007; American Meteorological Society, 2012; 

Houghton et al., 2012). 

As reported by the Fifth Assessment Report of the Intergovernmental Panel on Climate 

Change (IPCC), “natural and anthropogenic substances and processes that alter the Earth’s energy 

budget are the drivers of climate change” (IPCC, 2013). Earth’s global temperature has increased 

by 0.8 degrees in the last century, with more than half of the increase occurring in the previous 

thirty years (Blunden and Arndt, 2012). Analysis has shown that there is a 95% probability that 

this warming is attributed to an enhanced greenhouse effect (Berger, 2000). In addition, a strong 

“greenhouse effect” has increased the global radiative forcing to 1.846 Wm-2 in 2012 (Butler and 

Montzka, 2013; Huang et al., 2015). 

Over the past few decades, the atmospheric gas abundances have been measured using 

balloons, aircraft and sparsely distributed measurement sites. These observations have produced 

important insights into flux variability. However, they lack high spatial coverage in ground-based 

observations. Currently, CO2 concentrations are mainly measured from ground-based observation 

platforms distributed in different areas of the world. Mauna Loa station, which is located on a high 

volcano in the Hawaii islands, began to collect atmospheric CO2 concentration in 1957, and the 

annual average level of CO2 is continuing to increase and currently is at 414.72 ppm in 2013 (Tans 

and Keling, 2014; Lindsey, 2022). Different stations in the Northern Hemisphere reveal the growth 
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rates of background CO2 have varied from 1–3 ppmv over the past decade (Tsutsumi et al., 2006; 

Artuso et al., 2009; Hofmann et al., 2009; Wang et al., 2010). However, insufficient knowledge of 

the sources and sinks of CO2 leads to significant gaps and large uncertainties in future climate 

predictions for the reason that observation of CO2 is limited by spatial and temporal coverages 

(Stephens et al., 2007; Marquis and Tans, 2008; Yoshida et al., 2011). Since these monitoring 

stations are located sparsely, it is impossible to acquire data through them (Khattak et al., 2014). 

In addition, surface networks are limited in representing complex atmospheric mixing in the mid 

to high troposphere, where the surface signal is diluted (Huntzinger et al., 2012). 

Satellite data acquired through the application of remote sensing have good spatial and 

temporal resolutions devoted to observations for estimating atmospheric CO2 concentration (Baker 

et al., 2010). The accuracy of satellite measurements makes remote sensing a practical tool for 

monitoring atmospheric CO2 concentration at the regional level (Rayner and O’Brien, 2001; 

Houweling et al., 2004). CO2 concentration data from satellite retrieval based on CO2 absorption 

spectra provide a long-term observation at the regional or global scale. For instance, two satellites 

are specifically designed to measure the column-averaged dry air mole fraction of carbon dioxide 

(XCO2). They are Japan’s Greenhouse Gases Observing Satellite (GOSAT) and NASA’s Orbiting 

Carbon Observatory-2 (OCO-2) (Yue et al., 2015). These observations could enable researchers to 

efficiently understand the dynamic processes that influence atmospheric CO2 concentrations and 

their effects on regional or global climate change (Miller et al., 2007; Chevallier et al., 2007). 

GHG concentrations could not be measured directly using remote sensing techniques before 

2002 (Revadekar et al., 2016). Thus, many studies have used the retrieved GOSAT data as a 

valuable tool to provide new data on greenhouse gases and atmospheric variables. For example, 

GOSAT data help decrease the estimated flux errors in global atmospheric transport models for 

investigating CO2 sources and sinks (Miyamoto et al., 2013). Consequently, a method for 

converting aircraft profile data to column-averaged data was proposed in their study. Their analysis 

suggested that the aircraft data uncertainties were sufficiently small and could be used for primary 

validation of satellite data. Furthermore, the combination of the Scanning Imaging Absorption 

Spectrometer for Atmospheric Chartography (SCIAMACHY) and GOSAT data revealed that the 

global spatial coverage of the CO2 map improved significantly regarding global CO2 distribution 

return. This study proved the effectiveness of the combination method for the generation of global-



 

126 

scale XCO2 maps with higher temporal and spatial sampling by jointly using the SCIAMACHY 

and GOSAT XCO2 datasets (Wang et al., 2014). 

Among the current satellites, the dataset of Level 2 (V02.xx) column-averaged dry air mole 

fractions of atmospheric CO2 (XCO2) derived from GOSAT observations showed an approximate 

two (2) ppm standard deviation as compared with ground-based observations and airborne 

measurement data (Yokota et al., 2009; NIES GOSAT Project, 2012). Although satellite 

observations have very good spatial distributions, the satellite retrievals of CO2 are severely 

restricted due to some disturbance factors, such as the presence of clouds and orbit configurations, 

creating extensively high uncertainties relative to ground CO2 observations. For instance, it has 

been pointed out that only about 10% of GOSAT data can be used to retrieve XCO2 due to cloud 

contamination (Morino et al., 2010). Understanding the spatial variability of CO2 needs immediate 

and serious attention by all relevant authorities worldwide, as it is an essential element that affects 

the quality of life (Mahapatra, 2010; Wu et al., 2012; Azid et al., 2014). So, Malaysia is also not 

excluded in these respects. However, research on atmospheric CO2 in Peninsular Malaysia is 

limited due to the lack of ground-station data. Thus, obtaining continuous CO2 measurements over 

the study area is a challenging task. In addition, the climatology of Malaysia is dominated by the 

northeast monsoon (NEM) and southwest monsoon (SWM). These monsoons have primarily 

encompassed a year and will affect the climate and atmospheric parameters differently. Therefore, 

the MLR was used for a spatial estimation algorithm based on GOSAT’s retrieved mid-

tropospheric CO2 and its association with the selected atmospheric variables over Peninsular 

Malaysia (Kim et al., 2020, 2022; Dimitriadou and Nikolakopoulos, 2022; Yuvaraj, 2020). The 

novel algorithm would allow researchers to investigate and analyze the effects of atmospheric 

variables on CO2 using statistical methods. The GOSAT satellite data and AIRS instrument data 

validate the proposed algorithm. 

 

2.0 Data and Methodology 

2.1 Site Description 

Peninsular Malaysia, also known as West Malaysia, is located south of Thailand, north of 

Singapore and east of the Indonesian island of Sumatra. The geographical extent of the study area 

is 1-7° N and 99-105° E (Figure 1), which covers an area of approximately 131,587 km2. 
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Figure 1. The geographical features of the study area. 

 

Peninsular Malaysia is located near the equator and has a humid tropical climate; the 

weather is warm and humid throughout the year, with a temperature that varies between 20 °C and 

32 °C (Omar, 2009). The local climate is affected by mountain ranges throughout Peninsular 

Malaysia; the climate can be divided into the highlands, the lowlands, and the coastal regions. The 

average monthly humidity falls between 70% and 90%, varying by location and month (Ahmad 

and Yassen, 2005). There is a definite variation in the monthly mean temperature that coincides 

with the monsoons, and there are annual fluctuations of approximately 1.5 °C to 2 °C. 

There are two main monsoon regimes: the Northeast Monsoon (NEM), which occurs from 

November to March, and the Southwest Monsoon (SWM), which occurs from late May to 

September (Wong et al., 2009). The NEM originates from China and the northern Pacific, whereas 

the SWM originates from Australia’s deserts. Furthermore, October is the transition month from 

the SWM to the NEM (Cruz et al., 2013). The maximum rainfall occurs in November for most 

areas in Peninsular Malaysia, and there is a second maximum rainfall during the inter-monsoon 

months of April or May. The lowest monthly rainfall occurs in February, and the highest in 

December (Varikoden et al., 2010). These monsoons are associated with many regional pollutant 

sources that affect atmospheric parameters and the amount of pollutants transported to Malaysia 

(Pochanart et al., 2003). 
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2.2 Instruments 

GOSAT was successfully launched on January 23, 2009, from Tanegashima Island, Japan (JAXA, 

2015). The average orbit altitude is 666 km; the local overpass time is 13:00, and there is a three-

day repeat cycle (Kuze et al., 2009). The Thermal and Near Infrared Sensor for Carbon Observation 

(TANSO) onboard GOSAT has two optical units: the Fourier Transform Spectrometer (FTS) and 

the Cloud and Aerosol Imager (CAI). The TANSO-FTS instantaneous field of view (IFOV) is 15.8 

mrad, corresponding to a nadir footprint diameter of approximately 10.5 km (Reuter et al., 2010; 

Bril et al., 2012). More details on the TANSO-FTS can be found in Kuze et al. (2009). 

GOSAT data have been validated and consistently compared with other satellite aircraft 

and in situ data. The retrieval of XCO2 from TCCON data represents a primary validation source 

for most of the satellite observations (Chahine et al., 2005, 2008; Kulawik et al., 2010; Crevoisier 

et al., 2009; Crisp et al., 2004; Bösch et al., 2006; Tahara and Usami, 2009; Yokomizo, 2008; 

Yokota et al., 2009). The Total Carbon Column Observing Network (TCCON) is a global ground-

based Fourier Transform Spectrometer (FTS) recording direct solar spectra in the near-infrared 

spectral region. The column-averaged abundances of CO2, CH4, N2O, HF, CO, H2O, and HDO are 

retrieved from these spectra by the least-squares spectral matching algorithm. TCCON spectra have 

minimal influences from aerosol particles, air mass uncertainties, or variations in land surface 

properties (Wunch et al., 2011). Thus, TCCON data serve as a transfer standard between satellite 

observations and in situ networks (Reuter et al., 2011; Wunch et al., 2009, 2010, 2011; Yang et al., 

2002). In addition, theoretical analyses have revealed that combining satellite measurements and 

inverse modelling can significantly diminish surface flux uncertainties. Sensitivity to all altitude 

levels containing the boundary layer should be possible using reflected solar radiation in the NIR 

or SWIR spectral region (Chevallier et al., 2007; Hungershoefer et al., 2010; Schneising et al., 

2013). 

The Atmospheric Infrared Sounder (AIRS) is one of several instruments onboard the Earth 

Observing System (EOS) Aqua satellite, launched on 4 May 2002. The Aqua satellite is in polar 

sun-synchronous orbit, flying at an altitude of approximately 705 km and completing an orbital 

cycle in 98.8 minutes. The platform’s equatorial crossing is at 13:30 local time; the cycle period is 

16 days (Aumann et al., 2003). The Aqua satellite includes two companion microwave instruments, 

i.e., the Advanced Microwave Sounding Unit (AMSU) and the Humidity Sounder for Brazil 

(HSB). The AIRS/AMSU/HSB combination provides coincident observations of the Earth’s 
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atmospheric, land and ocean surface temperatures and greenhouse gases for analyzing several 

interdisciplinary issues in the earth sciences. The AIRS instrument offers new insights into weather 

and climate for the 21st century, obtains information regarding several GHGs (CO2, CH4, and CO), 

and studies the water and energy cycles (Haskins and Kaplan, 1992; Marshall et al., 2006). Previous 

studies showed CO2 retrievals for clear-sky regions, which used measurements in limited time 

intervals, revealed the feasibility of obtaining successful CO2 data sets and overcoming some 

outstanding problems (Chédin et al., 2003; Crevoisier et al., 2004; Tiwari et al., 2014). On the other 

hand, validation by comparison to in situ aircraft measurements and retrievals by land-based 

upward-looking Fourier Transform Interferometers proves that AIRS CO2 is accurate to 1-2 ppm 

(Chahine et al., 2005, 2008). 

 

2.3 Method of Analysis 

The study primarily aimed to develop a predictive XCO2 regression model over Peninsular 

Malaysia with data on atmospheric variables (AAF, AOT, temperature, H2O vapor and SSA) as 

predictor variables based on the available data. This research used four years of data, encompassing 

April 2009 to December 2013, based on the available data in the study area. The related data was 

partly used to predict the regression model (2009-2012), and the final year, i.e., 2013, was used to 

validate and compare the regression model. The retrieved atmospheric standard products from the 

TANSO FTS SWIR Level 2 Version 02.28(v) and 02.29(v) data were downloaded from the 

GOSAT User Interface Gateway (GUIG) website (JAXA, 2015). The standard product used in this 

study is point data; the data footprint has a diameter of 10.5 km. The data for each variable were 

stored in HDF-EOS4 files, a convenient file extension. The data for each variable were extracted 

using HDFView and arranged into a table in MS Excel. The correlations between atmospheric 

parameters (AAF, AOT, temperature, H2O vapor and SSA) and predicted XCO2 equations were 

examined statistically using MLR by Statistical Package for Social Sciences (SPSS) software (Keat 

et al., 2014). 

Regression analysis, or curve fitting, is a virtuous method for predicting outcomes from 

measured values of an explanatory variable within a specific probability range. Before interpreting 

the result, several fundamental assumptions of MLR were checked. An inspection of the standard 

probability plot of regression standardized residuals revealed that all the observed values fall 

roughly along the straight line, indicating that the residuals are from the normally distributed 
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population. An MLR equation was generated to estimate XCO2 in peninsular Malaysia based on 

the individual B values: 

 

Yi =B0 + B1X1i + B2X2 i+ B3X3 i+ B4X4i ….+ βi      (1) 

 

where Y is the response variable, X1, X2, X3… are observed values of X1i, X2i, X3i …Xqi for i = 1… 

n explanatory variable, B0 is the regression equation constant, and B1, B2, B3, B4... are the 

explanatory variable constants. Additionally, regarding β, multiple regression can help investigate 

the impact of several response variables (X1i, X2i, X3i …) to one explanatory variable (Y). 

The temporal resolution of the AIRS Level 3 Standard products is daily, every eight days 

and monthly. The AIRS website provides all of the data, so we can access the AIRS website to 

acquire Level 3 data products quickly and easily. In this study, we used monthly ascending 

AIRX3C2M Level 3 data. The spatial resolution of AIRX3C2M is 2.5 degrees and 2.0 degrees in 

latitude and longitude. This monthly CO2 standard products from AIRS Level 3 Version 5.9.14.0 

were acquired for 2013. The AIRS data were employed to validate the predictive algorithm for 

XCO2 in the NEM season and XCO2 in the SWM season from GOSAT data. The data provide a 

clear interpretation of this study. AIRS data to validate XCO2 from GOSAT, despite AIRS having 

a coarser resolution, lies in its complementary strengths and the purpose of the validation. AIRS 

data, although coarser, provide valuable independent observations that can help confirm the 

accuracy and reliability of GOSAT measurements. 

 

3.0 Results and Discussion 

3.1 Generating Algorithm XCO2 with GOSAT Data 

As explained in Section 2.3, the MLR method was used to develop the predictive algorithms of 

XCO2 over peninsular Malaysia based on the GOSAT data from 2009 to 2012. Data for five 

atmospheric variables (AAF, AOT, temperature, H2O vapor and SSA) were used to generate the 

equation. Eq. (2) shows that the regression in terms of B was used to predict the XCO2 for the 

desired study area. The equation is given as follows: 

 

XCO2 = B0 + B1AAF + B2AOT + B3Temperature + B4H2O vapor + B5SSA (2) 
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B0 is the Regression Equation Constant, and BAAF, BAOT, BTemperature, BH2O Vapor, and BSSA are the 

explanatory coefficients, respectively. Based on the data availability, 184 daily sampling points 

from Peninsular Malaysia were chosen to develop a predictive XCO2 regression model in different 

monsoon seasons (i.e., NEM and SWM). The number of sampling points for NEM and SWM were 

84 and 100, respectively. The regression equations were determined to be: 

 

XCO2 = 607.95 + (-41.73) AAF + (-7971) AOT + (-0.6729) Temperature 

  + (-2.05 x 10-4) H2O vapor + (44.31) SSA     (3) 

 

XCO2 = 591.18 + (-14.39) AAF + (-5619) AOT + (-0.6339) Temperature 

  + (-3.56 x 10-4) H2O vapor + (26.15) SSA     (4) 

 

for the NEM and SWM seasons, respectively.  

The coefficients of determination (i.e., R2) were 0.68 and 0.64 for the NEM and SWM 

seasons, respectively. Furthermore, the regression coefficients were statistically significant, and 

the ρ value of all the coefficients was less than 0.05 (ρ < 0.05). In statistical analysis, SPSS software 

generates the appropriate statistical analysis, the ρ-value associated with the test statistic, and a 

confidence interval for the mean difference over an independent samples t-test. Good agreement 

was found between the atmospheric variables and XCO2 during the observation periods. The β 

coefficient was used in multiple regression analysis to study the impacts of AAF, AOT, 

temperature, H2O vapor and SSA with XCO2. Table 1 shows all the multiple regression results for 

NEM and SWM seasons regarding β. 
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Table 1. Estimated regression coefficient β ‘standardized beta coefficient’, for GOSAT data. 

Atmospheric variables Standardized beta coefficient, β P-value t-statistic 

(a) NEM 
   

AAF -0.38 0.00 -3.49 

AOT -0.61 0.00 -7.83 

Temperature -0.36 0.00 -3.70 

H2O vapor -0.24 0.02 -2.46 

SSA 0.31 0.00 3.28     

(b) SWM 
   

AAF -0.34 0.00 -1.40 

AOT -0.52 0.00 -8.5 

Temperature -0.33 0.00 -5.14 

H2O vapor -0.10 0.03 -4.76 

SSA 0.18 0.00 2.92 

 

XCO2 in peninsular Malaysia during the NEM season was most affected by AOT based on 

its highly negative β value. The highest negative β between AOT and XCO2 was -0.610, statistically 

significant at a 95% confidence level. During this period, the volume size distribution was higher 

due to the hygroscopic growth of urban aerosol particles; the effect is nearly comparable to the 1% 

or four (4) ppmv change in the CO2 concentration near the Earth’s surface. This effect is caused by 

strong pulses of wind, commonly known as cold surge outbreaks from Siberia and Northeast Asia, 

that transport pollution over Southeast Asia due to the interaction with the heavily polluted regions 

of East Asia (Pochanart et al., 2003). The air pollutant levels in continental Southeast Asia increase 

simultaneously (Pochanart et al., 2005). During the SWM season, XCO2 in Peninsular Malaysia 

was most affected by the AOT, indicated by the significant negative β value (-0.515) and statistical 

significance at the 0.05 level. Increased AOTs are mainly caused by biomass-burning activities and 

meteorological conditions during this season, such as relative humidity, temperature, and pressure. 

This relationship results from biomass burning activities and meteorological conditions, such as 

relative humidity, temperature and pressure (Dubovik et al., 2002). In addition, the impact of small 

to moderate amounts of air pollution transported by marine air masses from the Indian Ocean in 

the Southern Hemisphere to continental Southeast Asia enhances the atmospheric CO2 

concentration (Pochanart et al., 2003). 
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Principle component regression was used to compute the column-averaged dry air mole 

fraction of carbon dioxide (XCO2) with five atmospheric variables (AAF, AOT, Temperature, H2O 

vapor and SSA) over peninsular Malaysia. Table 2 shows the Pearson correlation matrices of the 

variables for NEM and SWM seasons. 

 

Table 2. Pearson correlation matrix of different variables for NEM and SWM season. The 

statistically significant correlation coefficients (ρ < 0.05) are bolded.  

  AAF AOT Temperature H2O vapor SSA XCO2 

(a) NEM season 

AAF 1 0.26 -0.60 0.62 0.54 -0.31 

AOT  1 0.07 0.28 0.28 -0.67 

Temp   1 -0.50 -0.51 0.13 

H2O vapor    1 0.24 0.40 

SSA     1 0.06 

XCO2      1 

       

(b) SWM season 

AAF 1 0.33 -0.30 0.59 0.32 -0.32 

AOT  1 0.09 0.24 0.03 -0.60 

Temp   1 -0.33 -0.36 0.30 

H2O vapor    1 0.10 -0.40 

SSA     1 0.22 

XCO2      1 

 

During the NEM season, XCO2 was highly and negatively correlated with the AOT (-0.665) 

and moderately correlated with the AAF (-0.309), whereas XCO2 was positively correlated with 

the H2O vapour (0.393), temperature (0.127) and SSA (0.057). The increase in XCO2 is associated 

with increased H2O vapor, temperature and SSA and decreased AOT and AAF. These results were 

expected because these pollutants are known precursors of XCO2. In the SWM season, XCO2 was 

negatively correlated with the AOT (-0.656), H2O vapor (-0.399), and AAF (-0.315) and positively 

correlated with the temperature (0.299) and SSA (0.219). 

The PCA algorithm is beneficial in reducing data dimensionality by extracting the related 

variables and achieving better results. The first processing step was transforming the predictor 

variables into equal principal components. The primary objective was to get a small number of 

components that could elucidate most (60–90%) of the total variation in the predictor variables. 
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Next, varimax rotation was utilized to maximize the loading of a predictor variable on one 

component of PCA. Generally, applications of PCA procedures followed by a varimax rotation 

generate a ranked series of factors. Table 3 and Table 4 present the varimax rotation results of the 

five principal components, together with the amount of variance accounted for by each component 

for the NEM and SWM seasons, respectively. 

 

Table 3. Rotated principal components loadings for NEM season. 

Atmospheric variables PC1 PC2 PC3 PC4 PC5 

AAF 0.82 0.31 0.32 0.30 0.83 

AOT 0.83 0.14 0.09 0.15 0.06 

Temperature 0.13 0.88 -0.25 -0.29 -0.24 

H2O vapor 0.64 0.44 0.91 0.07 0.25 

SSA 0.75 -0.01 0.07 0.94 0.21 

Eigenvalue 2.76 1.59 0.81 0.40 0.29 

% of Variance 45.99 26.47 13.56 6.68 4.76 

Cumulative % 45.99 72.46 86.02 92.7 97.46 

 

Table 4. Rotated principal components loadings for SWM season. 

Atmospheric variables PC1 PC2 PC3 PC4 PC5 

AAF 0.61 0.60 0.17 0.29 0.91 

AOT 0.80 -0.10 0.03 0.08 0.14 

Temperature 0.11 0.82 -0.17 -0.16 -0.13 

H2O vapor 0.63 0.49 0.02 0.92 0.28 

SSA -0.08 0.70 0.97 0.02 0.14 

Eigenvalue 2.29 1.78 0.82 0.53 0.37 

% of Variance 38.23 29.61 13.66 8.87 6.09 

Cumulative % 38.23 67.84 81.50 90.37 96.46 

 

According to the Kaiser and Guttman rule, eigenvalues greater than or equal to 1 can be 

considered statistically significant. Tables 5 and 6 show that the first two principal components 
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(i.e., PC1 and PC2) were retained because they accounted for 72% and 67% of the total variation 

during the NEM and SWM seasons, respectively. For the NEM season, PC1 accounted for 46% of 

the total variation in the data, which was found to be loaded heavily on [AAF], [AOT], and [SSA], 

with small contributions from [temperature], and [H2O vapor]. PC2, which accounted for 

approximately 26% of the total variation, was loaded heavily on [AOT], with only small 

contributions from [H2O vapor] and [AAF]. Principal components three, four and five were loaded 

heavily on [H2O vapor], [SSA] and [AAF], respectively. 

 

Table 5. Rotated principal components loadings for NEM season. 

Atmospheric variables PC1 PC2 PC3 PC4 PC5 

AAF 0.82 0.31 0.32 0.30 0.83 

AOT 0.83 0.14 0.09 0.15 0.06 

Temperature 0.13 0.88 -0.25 -0.25 -0.24 

H2O vapor 0.64 0.44 0.91 0.07 0.25 

SSA 0.75 -0.01 0.07 0.94 0.21 

Eigen value 2.76 1.59 0.81 0.40 0.29 

% of Variance 45.99 26.47 13.56 6.68 4.76 

Cumulative % 45.99 72.46 86.02 92.70 97.46 

 

Table 6. Rotated principal components loadings for SWM season. 

Atmospheric variables PC1 PC2 PC3 PC4 PC5 

AAF 0.61 0.60 0.17 0.29 0.91 

AOT 0.80 -0.10 0.03 0.081 0.14 

Temperature 0.11 0.82 -0.17 -0.16 -0.13 

H2O vapor 0.63 0.49 0.02 0.92 0.28 

SSA -0.08 0.70 0.97 0.02 0.14 

Eigen value 2.30 1.78 0.82 0.53 0.37 

% of Variance 38.23 29.61 13.66 8.87 6.09 

Cumulative % 38.23 67.84 81.50 90.37 96.46 
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The pattern for the SWM season differed slightly from the NEM season for the first two 

principal components shown in Table 5. The remaining principal components accounted for 

progressively less of the total variation. Stepwise regression analysis was used to determine the 

original independent variables that are significant to the variation of the transformed XCO2 

observations based on the principal components selected as independent variables. The results of 

the analysis are summarized in Table 7. 

 

Table 7. A linear regression model is used to predict XCO2 using the principal components.    

                Predictors Constant PC1 PC2 

(a) NEM season        

Adjusted R-squared  0.68 0.90 

Estimated regression coefficient 391.39 0.83 0.95 

    

(b) SWM season    

Adjusted R-squared  0.78 0.87 

Estimated regression coefficient 390.17 0.87 0.93 

 

The primary objective of the last section was to select a subset of predictor variables that 

produce the best predictive algorithm for XCO2 based on the multiple linear regression method. 

The selected original independent variables were those with high loadings associated with each of 

the principal components included in the regression equation that had high coefficients of 

determination. Table 5 to Table 6 were used for the NEM and SWM seasons to match a PC in the 

regression analysis to an independent variable. In this study, only the highest loading for each PC 

was chosen for the XCO2 prediction model because it produces an acceptable accuracy. Procedures 

for applying the highest loading used can be found in other studies (Abdul-Wahaba et al., 2005; 

Al-Alawi et al., 2008; Rajab et al., 2013). [AOT] was selected from PC1, and [temperature] from 

PC2. These two variables were then used as predictor variables in a subsequent regression analysis. 

The following regression models were derived: 

 

For the NEM season: 

(PCA1) XCO2 = 391.39 + 0.778 [AOT] + 2.530 [Temperature]   (5) 
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For the SWM season: 

(PCA2) XCO2 = 390.17 + 0.823 [AOT] + 2.488 [Temperature   (6) 

 

3.2 Validation of the Predicted XCO2 with the Observed AIRS XCO2 

All prediction algorithms, i.e., XCO2 in the NEM season and XCO2 in the SWM season, were 

validated using independent observed GOSAT and AIRS data. The average relative difference 

between XCO2 concentrations retrieved from observed GOSAT and AIRS was computed through 

GOSAT-retrieved XCO2 datasets and AIRS-retrieved XCO2 datasets. The mean relative difference 

for the XCO2 data retrieved from GOSAT and AIRS is approximately 6%. Even though the mean 

relative difference exists between GOSAT-retrieved and AIRS-retrieved datasets, the relative 

difference remained within an acceptable range. The validations were conducted using the MLR 

method for both NEM and SWM seasons in 2013. First, the predicted XCO2 values were validated 

against the observed XCO2 values from the AIRS, and the coefficients of determination (R2) were 

analyzed. Figure 2 and Figure 3 shows the validation results for the predicted XCO2 in the NEM 

and the SWM seasons, respectively; the predicted values are linearly and positively correlated with 

the observed XCO2 values from the AIRS data. The R2 were 0.80 and 0.80, respectively. The results 

show that the predicted XCO2 and the observed XCO2 from the AIRS instrument are highly 

correlated. These results indicate that the predicted XCO2 is nearly identical to the observed XCO2. 

Then, two predicted XCO2 algorithms expressed in Eq. (3) and Eq. (4) were validated against 

observed XCO2 obtained from GOSAT. The validation was performed from the NEM and SWM 

seasons in 2013, respectively. 
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Figure 2. Predicted XCO2 vs. observed XCO2 from the AIRS for the NEM season. 

 

Figure 3. Predicted XCO2 vs. observed XCO2 from the AIRS for the SWM season. 

 

Figure 4 and Figure 5 shows the validation results for the predicted XCO2 compared with 

the observed values from GOSAT. The predicted regression model of XCO2 yielded a strong R2 

of 0.8412 and 0.8348 for the NEM and SWM seasons, respectively. 

 



 

139 

 

Figure 4. Predicted XCO2 vs. observed XCO2 from the GOSAT for the NEM season. 

 

 

Figure 5. Predicted XCO2 vs. observed XCO2 from the GOSAT for the SWM season. 

 

Furthermore, the regression coefficients were statistically significant, and the ρ value of all 

the coefficients was less than 0.05. The high correlations suggest that the predicted regression 

model is accurate and efficient. Consequently, all points cluster along the 45° tangent, providing 

more evidence of model efficiency. Slight discrepancies were found between the predicted XCO2 

and observed XCO2 values for the AIRS instrument and GOSAT during the NEM and SWM 
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seasons. These findings may be attributed to factors not considered in this study, including 

meteorological parameters (wind speed, precipitation, relative humidity and mean surface 

pressure). 

 

3.3 Evaluating the Impacts of the Monsoon on XCO2 

Seasonal variations result in XCO2 fluctuations in the NEM and SWM seasons over Peninsular 

Malaysia. XCO2 is positively correlated with both the ambient temperature and wind speed. The 

most prominent winds in Malaysia are from the northeast and the south. Trade winds generally 

follow the prevailing monsoon flow except when light winds are modified by terrain. Wind strength 

is greater during the NEM than in the SWM season (Taira et al., 1996). The strong monsoon and 

the associated movement of the inter-tropical convergence zone (ITCZ) were also examined in this 

study. The magnitudes of wind and flow patterns at the 1000 mb pressure level in the atmosphere 

are shown in Figure 6 and Figure 7, respectively. These figures show the mean synoptic charts and 

the wind vector characteristics for the NEM and SWM seasons from 2009 to 2013, respectively. 

Vectors show the resultant wind direction, and the vector length indicates the magnitude of the 

consequent wind. A colour-coded bar in the map indicates the magnitude of wind for a given speed 

in units of m/s. Contours show the magnitude of the resultant observed wind speed at a contour 

interval of 3 m/s. The results demonstrate that the wind direction follows the general wind flow 

patterns indicative of the SWM and NEM seasons. 
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Figure 6. The mean vector wind was 1000 mb over peninsular Malaysia for the NEM from 2009 

to 2013. 

 

Figure 7. The mean vector wind was 1000 mb over Peninsular Malaysia for the SWM from 2009 

to 2013. 
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The movement and transition of the ITCZ between the two monsoon seasons are 

distinguishable. When the ITCZ moves southward across Asia and into the Southern Hemisphere, 

the northeasterly winds transport air masses from the Indian Ocean to peninsular Malaysia during 

the SWM season (May to October). Subsequently, the ITCZ relocates to the Northern Hemisphere, 

resulting in long-range transport of air masses from West Asia and the Middle East during the NEM 

season and a six-month dry period (November to April). Both monsoon seasons are well 

represented in the mean synoptic charts. Long-range transportation of air pollution was 

predominantly a result of the outflow from Northeast Asia during the NEM across the Peninsular 

Malaysia region (see Figure 6). Figure 7 shows the wind vector plots delineating the area of the 

ITCZ from the data analysis. There is a clear differentiation between the southeast and northeast 

trade wind systems. Trade wind systems produce an area of strong convergence at the interface 

from the ITCZ zone associated with the SWM and NEM seasons. 

 

4.0 Conclusion 

This paper primarily focuses on developing an algorithm to predict the column-averaged dry air 

mole fraction of carbon dioxide (XCO2) over peninsular Malaysia using GOSAT satellite data. 

Four years of satellite data were employed to develop the algorithms, i.e., XCO2 in the NEM season 

and XCO2 in the SWM season, for calculating XCO2 over peninsular Malaysia using the MLR 

method. The best XCO2 regression equations using MLR for the five independent variables in the 

NEM and SWM seasons resulted in R2 values of 0.682 and 0.643, respectively. This result indicates 

that the atmospheric variables and XCO2 are highly correlated over the study period. The linear 

regression correlation validation results were performed for XCO2 with the observed XCO2 values 

from the AIRS instrument and GOSAT satellite. The adjusted coefficients (R2) of the validation 

for the NEM and SWM seasons were 0.8412 and 0.8348, respectively. The results revealed that 

the predicted XCO2 values were nearly the same as the observed XCO2 values from AIRS and 

GOSAT. Further research is required to investigate the effect of radiation on the CO2 biosphere 

flux, humidity, rainfall, and wind speed. Finally, air pollution transport to continental Southeast 

Asia due to the long-range transport of air masses from Northeast and West Asia during the 

monsoon season should also be examined in future research. As additional satellites for assessing 

the CO2 have been premeditated to launch in future, satellite observations of CO2 should have a 
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vital application perspective in understanding the variation of global atmospheric CO2, computing 

regional CO2 emission, and integrating the model to evaluate the carbon fluxes.  
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