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Abstract – The study investigates the spatial distribution of COVID-19 cases in Selangor, Malaysia, utilizing geospatial and 

geostatistical techniques to identify and analyze hotspots. Focusing on data from 54 districts between April and August 2021, 

the research employs Global Moran’s I and Getis-Ord Gi* models to detect spatial autocorrelation and clustering patterns. The 

study also incorporates additional parameters, including new cases, cumulative cases, deaths, clusters, and population density, 

to comprehensively analyze COVID-19 hotspots. The results reveal a significant clustering of COVID-19 cases, with specific 

districts like Petaling, Hulu Langat, and Klang identified as high-risk hotspots. The findings of this research emphasize the 

critical role of spatial analysis in understanding the spread of infectious diseases like COVID-19. By identifying and mapping 

out high-risk districts, this study provides valuable insights that can inform public health strategies and optimize resource 

allocation in response to the pandemic. Identifying hotspots within Selangor underscores the necessity for targeted interventions 

and deploying healthcare resources to areas most affected by the virus. Ultimately, this study contributes to a deeper 

understanding of the spatial dynamics of COVID-19 in Selangor, offering a framework for future research and public health 

planning in the context of epidemic management. 
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1.0 Introduction 

1.1 Background 

A novel coronavirus was discovered as the source of an infection epidemic in China in 2019. This 

novel coronavirus developed in Hubei Province, China, and the infection by the virus is called 

COVID-19 (Surveillances, 2020). The first cases in Malaysia were recorded in Johor Bahru, 

involving a 65-year-old lady and two children, ages two and eleven. Then, the cases were restricted 

to a few imported cases until March 2020, when many local clusters had since developed. Since 

then, the number of positive cases in Malaysia has risen (Fatima et al., 2021). Selangor was reported 

as the state with the most COVID-19-positive cases compared with other states in Malaysia 

(Hakim, 2021). 

A hotspot is a geospatial technique that assures cases are located in the centre. Much 

research has used variable techniques to analyze these hotspots, which may help distinguish 

between the hotspots and normal regions (Xu et al., 2021). Those methods include Getis–Ord Gi*, 

Kernel Density Estimation, Nearest Neighbour Index, and Standard Deviational Ellipses. 

This research will utilize the number of new cases, cumulative cases, deaths, cluster, and 

population density to map the Selangor state’s hotspot detection. Many nations have been 

attempting to identify COVID-19 hotspots to take appropriate action, depending on confirmed and 

positive cases that have been documented. The current study, on the other hand, employed 

geospatial and geostatistical techniques, as well as other important parameters rather than just 

COVID-19 cases, to find the most critical component that may be considered for detecting hotspots 

of new coronavirus development in Selangor. This included research in 54 districts in Selangor for 

five (5) months, from April to August 2021. 

The objectives of the research are: (1) to determine the parameter for the hotspot analysis; 

(2) to develop a geospatial database for the hotspot analysis; and (3) to generate a hotspot map and 

to analyze the factor contributing to higher COVID-19 deaths. Since this research mainly focuses 

on hotspot detection of COVID-19, the significance of this research on hotspot analysis can help 

to recognize which places in a study area should receive more attention, which locations are more 

impacted, and which areas are highly susceptible soon. 
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2.0 Literature Review 

2.1 Hotspot Detection Using Spatial Statistics 

According to Columbia Public Health, hotspot analysis is a spatial analysis and mapping technique 

interested in identifying and clustering spatial phenomena. These spatial phenomena are depicted 

as points on a map and refer to locations of events or objects (Columbia Public Health, 2023). 

Spatial autocorrelation and cluster analysis are two approaches for analyzing spatial patterns and 

detecting hotspots. 

The spatial autocorrelation study examines how effectively items correlate with 

neighbouring objects across a geographical region (Getis & Ord, 2008). Positive autocorrelation 

occurs when numerous identical values are discovered close together, and negative correlation 

occurs when significantly diverse outcomes are found close together. The significance of spatial 

autocorrelation is that it helps to determine how essential spatial qualities are in impacting a 

specific item in space and whether there is a clear link between objects and spatial attributes (Cliff 

& Ord, 1981). Significantly negative or positive findings suggest that the object has a distinct 

spatial feature with a high correlation. 

The idea of cluster analysis is to identify natural object segmentation. In other words, it 

divides related observations into homogenous subsets. These subclasses might indicate patterns 

linked to the investigated issue  (Everitt et al., 2011). A distance approach is utilized to establish 

whether units are similar, and various clustering algorithms based on multiple conceptions are 

provided. When data is clustered, similarity measures are taken between the data and then between 

the clusters. 

Hotspot analysis techniques, such as Getis-Ord Gi* and Local Moran’s I, are commonly 

used in epidemiological studies to identify and visualize the spatial distribution of diseases, 

including COVID-19 (Anselin, 1995; Getis & Ord, 1996). These techniques allow researchers to 

identify areas with a high concentration of cases (hotspots) and areas with a low concentration of 

cases (cold spots). Understanding these patterns is crucial for public health interventions and 

resource allocation. 

 

2.2 Models 

Throughout this study, the models used are Global Moran’s I and Getis-Ord Gi*. The degree of 

resemblance about other surrounding items was determined using spatial autocorrelation. Global 



 

172 

Moran’s I statistics were used to quantify spatial correlation in general, with three categories of 

categorization statistics: positive, negative, and no autocorrelation (Moran, 1948). To distinguish 

between hotspots and cold spots, Getis-Ord Gi* will be utilized (Getis & Ord, 2008). 

The degree of the selected characteristics’ distribution patterns, such as cluster, scattered, 

and random over the research region, is measured using Global Autocorrelation or Global Moran’s 

I, which Patrick Moran proposed in 1948 (Moran, 1948). The statistical significance of the Global 

Autocorrelation is determined by comparing all of the specified characteristics by locations and 

attributes. A positive Moran’s I index value shows a trend toward clustering when the z-score or 

p-value implies statistical significance. In contrast, a negative Moran’s I index value shows a trend 

toward dispersion (Cliff & Ord, 1981). This tool computes a z-score and p-value to determine 

whether or not the null hypothesis could be rejected. The null hypothesis in this example asserts 

that feature values are distributed randomly over the research region. The Input Field must be filled 

with a variety of values. This statistic’s calculation requires some variance in the evaluated 

parameter (Getis & Ord, 2008). 

To determine the spatial relationship between the feature’s high and low values, local G 

statistics or Getis-Ord Gi* are utilized (Getis & Ord, 2008). The output that the Getis-Ord Gi* 

provides is a z-score, which, unlike Global and Local Moran’s I, does not require further Z-score 

calculation (Monzur, 2019). The z-scores and p-values are statistical significance measures that tell 

if the null hypothesis should be rejected feature by feature. In sum, they show that if the observed 

spatial clustering of high or low values is more robust than one would anticipate from a random 

distribution of those same values, The False Discovery Rate, known as FDR adjustment, is not 

applied to the z-score and p-value variables. Whether or not the FDR correction is done, the Gi Bin 

field indicates statistically significant hot and cold regions (Fotheringham et al., 2002). Features in 

the +/−3 bins have a 99 per cent confidence level of statistical significance; features in the +/−2 

bins have a 95 per cent confidence level; features in the +/−1 bins have a 90 per cent confidence 

level; and features in bin 0 have no statistical relevance (Fotheringham et al., 2002). 

The rationale behind selecting Global Moran’s I and Getis-Ord Gi* lies in their ability to 

identify and differentiate clusters and hotspots within spatial data effectively. Global Moran’s I is 

suitable for detecting overall spatial patterns, while Getis-Ord Gi* is advantageous for identifying 

localized clusters. These techniques offer a comprehensive understanding of spatial distribution 

patterns, which is crucial for analyzing COVID-19 data (Getis & Ord, 2008; Moran, 1948). 
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2.3 Previous Study on Hotspot Detection 

This section summarizes articles based on previous studies on the Hotspot Detection of COVID-

19. These articles employed different techniques and approaches for data processing and data 

analysis. These studies provide good references in general for producing a good hotspot detection 

of COVID-19 in Selangor. 

A study examined the spatial distribution of COVID-19 crude rates on a global scale 

through the application of global and local spatial autocorrelation techniques of cluster detection 

and hotspot analysis to provide the geospatial analysis of the COVID-19 pandemic for the year 

2020 (Su et al., 2020). The data was processed using Getis-Ord Gi* for hotspot analysis, Anselin 

Local Moran’s I for spatial cluster outlier, and Global Moran’s I for global autocorrelation. 

Another research utilized various spatial analysis methods to identify and analyze COVID-

19 hotspots in multiple regions (Rex et al., 2020). These methods included Kernel Density 

Estimation (KDE) to create a continuous surface density of COVID-19 cases, which helped 

visualize areas with a high concentration of cases over a continuous landscape. The Nearest 

Neighbour Index (NNI) was also used to determine the clustering tendency of COVID-19 cases by 

comparing the observed average distance between cases to the expected average distance in a 

random distribution. These methods provided a more nuanced understanding of the spatial 

distribution and clustering patterns of COVID-19 cases. 

Using Standard Deviational Ellipses (SDE) in hotspot detection helped identify the 

directional distribution of COVID-19 cases, which can be crucial for understanding the spread 

dynamics of the virus (Li et al., 2020). This method provided additional insights into the spatial 

distribution patterns by summarizing the spatial characteristics of the case locations, including the 

central tendency, dispersion, and directional trends. 

Overall, combining these various spatial analysis methods and models has proven effective 

in identifying and understanding the spatial distribution patterns of COVID-19 cases. These 

techniques provide valuable insights that can inform public health strategies and interventions to 

mitigate the spread of the virus. 
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3.0 Methodology 

The research methodology has been produced to achieve all three research objectives. This study 

is divided into four phases of Methodology: Phase 1 focuses mainly on the preliminary research 

and literature review, as discussed in Section 2.0, whereas Phase 2 highlights data acquisition; 

Phase 3 on data processing; and lastly, Phase 4 on results and analysis. 

 

 

Figure 1. Research method 

 

3.1 Data Acquisition 

Data acquisition is a crucial phase that must be completed once the preliminary research and 

literature evaluation has been completed. This phase will elucidate the source data: number of new 

cases, number of cumulative cases, number of deaths, population density, and number of clusters. 

The data related to COVID-19 cases, which are number of deaths by COVID-19, 

cumulative cases, new cases, and number of COVID-19 clusters from April 2021 until August 
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2021, are collected from the Ministry of Health’s official website. As for the population density 

data, the population in Selangor is collected from the Department of Statistics Malaysia for 2020. 

Other than that, the Selangor Boundary of spatial data was also used to develop the Mukim 

Boundary. 

 

3.2 Data Processing 

3.2.1 Develop Geospatial Database 

Data processing is obtaining raw data and transforming it into usable data. Firstly, the Geospatial 

Database was developed in ArcMap 10.4 before it could begin to store the spatial and non-spatial 

data. The geodatabase is created by creating a File Geodatabase from the folder Connection in 

ArcMap. 

 

3.2.2 Processing of Spatial and Non-Spatial Data 

The spatial data of Mukim Boundary were developed using Selangor Boundary data by 

georeferencing the image of the Selangor district. The Excel spreadsheets of the non-spatial data 

are joined into the district point attribute for data processing. To get the population density data, 

the area of each district is calculated on ArcMap using the Calculate Geometry function. Then, 

population density is calculated using the Field Calculator function by utilizing population and area 

of district data. After all of the non-spatial data are completed in ArcMap (Figure 2), the point 

feature of the Mukim Boundary was generated as in Figure 3 to kickstart the analysis. 
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Figure 2. Attribute data used for data processing 

 

 

Figure 3. Mukim Boundary in Point Feature 

 

3.2.3 Apply Global Moran’s I 

Hotspot analysis depends on the availability of spatial clustering in the data. Hence, Global 

Moran’s I will be applied in this study using ArcMap 10.4. Global Moran’s I is a tool that 

determines spatial autocorrelation by employing feature locations and attribute values. Before 

applying Moran’s I, the Conceptualisation of Spatial Relationships, the parameter will be chosen 
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to represent the fundamental links between the features for analysis. The fixed band distance 

method has been selected, which works well with point data. 

The Global Moran’s I tool produces five key results: the Moran’s I Index, Expected Index, 

Variance, Z-score, and P-value. The Moran’s I Index ranges from -1 to +1, where +1 indicates 

perfect clustering, 0 indicates a random spatial pattern, and -1 indicates ideal dispersion. The 

Expected Index is the value of Moran’s I under the null hypothesis of no spatial autocorrelation, 

serving as a benchmark to determine if the observed Moran’s I index significantly deviates from 

random distribution. The Variance indicates the variability of the Moran’s I index, helping to 

determine the statistical significance of the observed spatial autocorrelation. The Z-score shows 

how many standard deviations the observed Moran’s I index is from the expected index, with a 

high positive Z-score suggesting clustering and a low negative Z-score suggesting dispersion. The 

P-value indicates the probability that the observed spatial pattern is due to chance, with a low P-

value (typically < 0.05) indicating a statistically significant pattern. 

These values are accessible via the Results tab and provided as output values for use in 

models or scripts. Additionally, this tool can generate an HTML file with a visual report of the 

results (Figure 4). For example, an output might show a Moran’s I Index of 0.069970, an Expected 

Index of -0.018868, a Variance of 0.000491, a Z-score of 4.009499, and a P-value of 0.000061, 

indicating a significant clustering of COVID-19 cases in the study area. 

 

 

Figure 4. Example of spatial autocorrelation report 
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3.2.4 Apply Getis–Ord Gi* 

Getis–Ord Gi* statistics will be applied to obtain information on Selangor’s COVID-19 hotspots 

and cold spots. Getis–Ord Gi* generates a new Output Feature Class for each feature in the Input 

Feature Class, complete with a Z-score, P-value, and confidence level bin (Gi Bin). Statistical 

significance is determined using the P-value and Z-score fields without FDR correction. If the FDR 

Correction parameter is applied, the essential P-values defining confidence levels are decreased. 

The fixed band distance method is used with a threshold distance of 50 kilometres. When the 

Output Feature Class of Hotspot Analysis is generated, the hotspot mapping for each parameter 

will be created, allowing the pattern of hotspots to be observed via ArcMap 10.4. 

The outputs include the Gi Z-Score, P-value, and Gi Bin. The Gi Z-Score measures the 

intensity of clustering, with a high positive Z-score indicating a hotspot and a high negative Z-

score indicating a cold spot. The P-value indicates the statistical significance of the Z-score, with 

a low P-value indicating that the hotspot or cold spot is statistically significant. The Gi Bin 

categorizes the confidence level of each feature into bins based on the Z-score and P-value, 

showing statistical significance (e.g., 90%, 95%, 99%). 

 

4.0 Results and Analysis 

4.1 Spatial Autocorrelation 

Table 1 shows the results of Global spatial autocorrelation at a fixed distance band of 50 kilometres. 

The global spatial autocorrelation showed that all the parameters were clustered, resulting from 

Moran’s I value being higher than 0, and the results were also highly significant, with the value of 

p being less than 0.01. Therefore, the null hypothesis is rejected since all the z-scores are greater 

than 1.96, indicating that all the parameters are highly significant. Global Moran’s I reported that 

the cumulative cases generated the highest Moran’s I value of 0.123709, resulting from the highest 

critical value (z-score) of 6.057562. There is less than 1% likelihood that this clustered pattern 

could result from random chance. On the other hand, population density produces the lowest value 

of Moran’s Index, which produces the lowest value of z-score of 4.009499. 
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Table 1. Global spatial autocorrelation analysis of COVID-19 by using Global Moran’s I 

Parameters Moran’s 

Index 

Expected 

Index 

Variance Z-score P-value Pattern 

Population Density 0.069970 −0.018868 0.000491 4.009499 0.000061 Clustered 

New Cases 0.109685 −0.018868 0.000537 5.549976 0.000000 Clustered 

Cumulative Cases 0.123709 −0.018868 0.000554 6.057562 0.000000 Clustered 

COVID-19 

Deaths 

0.099257 −0.018868 0.000555 5.015994 0.000001 Clustered 

COVID-19 

Clusters 

0.096285 −0.018868 0.000524 5.029043 0.000000 Clustered 

 

 

4.2 Hotspot Analysis 

The hotspot mapping for each parameter, new cases, cumulative cases, population density, 

COVID-19 clusters, and COVID-19 deaths, is being produced. Ten hotspot maps are being 

produced. The hotspot mapping based on new cases in Figure 6, the cold spot area focuses on the 

Ulu Bernam, Sungai Panjang, Pasir Panjang, Pancang Bedena, Tanjung Karang, Sungai Tinggi, 

Peretak, Kerling, Ampang Pechah, Sungai Gumut, Kalumpang, and Kuala Kalumpang with the 

value of confidence level is 90%and 95% 99%. On the contrary, Ulu Langat, Ampang, Ulu 

Semenyih, Cheras, Kajang, Semenyih, Beranang, Dengkil, Labu, Sepang, Klang, Kapar, Tanjong 

Dua Belas, Telok Panglima Garang, Bandar, Jugra, Kelanang, Morib, Batu (Kuala Langat), Ulu 

Kelang, Rawang, Batu (Gombak), Sungai Buloh, Bukit Raja, Damansara, and Petaling are detected 

as hotspot 90%, 95% and 99% confidence level. 

On the other hand, the hotspot area for cumulative cases in Figure 7 has the same trend as 

a hotspot of new cases but is slightly different in the cold spot area. Compared with new cases, 

Mukim Rasa has become a cold spot with a confidence level of 90%, which is the low value of z-

score but higher than 1.96. Sungai Gumut stayed in a cold spot but had a higher confidence level 

of 99%. 
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Figure 5. Hotspot detection of population density in 2021 

 

 

Figure 6. Hotspot detection of new cases from April to August 2021 
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Based on Figure 5 on population density, Klang, Kapar, Sungai Buloh, Bukit Raja, 

Damansara, Petaling, Jugra, Telok Panglima Garang, Bandar, Kelanang, Morib, Batu, Tanjung Dua 

Belas, Labu, Dengkil, Kajang, Beranang, Semenyih, Cheras, Ulu Semenyih, Ulu Langat, Ampang, 

Ulu Kelang, Setapak, Batu, and Rawang had shown a significant hotspot with confidence level of 

90%, 95% and 99%. Half are in Sabak Bernam and Ulu Selangor, which are Sungai Panjang, Pasir 

Panjang, Ulu Bernam, Kuala Kalumpang, Kalumpang, Sungai Gumut, Kerling, Peretak, and 

Ampang Pechah are detected as a cold spot with a confidence level of 90%, 95% and 99%, hence 

the other area is identified as not significant. 

 

 

Figure 7. Hotspot detection of cumulative cases from April to August 2021 

 

Cold spots of COVID-19 clusters (Figure 8) are in the majority area of Ulu Selangor and 

Sabak Bernam, with the addition of two mukim in Kuala Selangor. The cold spot area in those 

places is 90% and 95% confidence level. Meanwhile, the hotspot area is focusing on Kapar, Klang, 

Damansara, Petaling, Jugra, Telok Panglima Garang, Bandar, Ketanang, Morib, Batu (Kuala 

Langat), Tanjong Dua Belas, Sepang, Labu, Dengkil, Ampang, Cheras, Kajang, Ulu Semenyih, 

and Batu (Gombak) which resultant of 19 hotspot mukim. Meanwhile, the other places are 

insignificant, with low z-scores and high p-values. 
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Figure 8. Hotspot detection of COVID-19 clusters from April to August 2021 

 

Kapar, Klang, Jugra, Telok Panglima, Bandar, Kelanang, Morib, Tanjong Dua Belas, Batu 

(Kuala Langat), Sepang, Labu, Dengkil, Sungai Buloh, Bukit Raja, Damansara, Petaling, Kajang, 

Beranang, Semenyih, Cheras, Ulu Semenyih, Ulu Langat, Ampang, Ulu Kelang, Batu (Gombak), 

and Rawang are detected as hotspot with 99%, 95% and 90% confidence level for the COVID-19 

deaths (Figure 9). Meanwhile, the cold spot area occurring in the area neighbouring boundary of 

Ulu Selangor, Kuala Selangor and Sabak Bernam with confidence level of 90%, 95%, and 99% 

which involve mukim Ulu Tinggi, Tanjong Karang, Pasir Panjang, Pancang Bedena, Sungai 

Panjang, Ulu Bernam, Kalumpang, Kuala Kalumpang, Sungai Gumut, and Sungai Tinggi. 

Referring to Figure 5 until Figure 9, there is detected identical cold areas of COVID-19 in 

Sungai Besar, Pasir Panjang, Ulu Bernam, Kalumpang, Kuala Kalumpang and Sungai Gumut, 

while hotspot areas of COVID-19 are in Batu, Dengkil, Labu, Damansara, Petaling, Ulu Semenyih, 

Kajang, Cheras, Ampang, and all of the mukim in Kuala Langat and Klang. 
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Figure 9. Hotspot detection of COVID-19 deaths from April to August 2021 

 

4.3 Hotspot Analysis Between Parameters 

The increasing of COVID-19 deaths in Malaysia, especially in Selangor, has become a concern for 

the people. Therefore, this study will also analyze the hotspot mapping between the parameters to 

identify and conclude the parameter contributing to the number of deaths. To realize the study’s 

objective, the generated hotspot mapping determines the parameter that contributes the most to 

COVID-19 deaths. Based on the highly significant hotspot of COVID-19 deaths (Figure 9), it is 

detected that the new cases (Figure 6) and cumulative cases (Figure 7) have the same significant 

value in the areas which are Klang, Tanjong Dua Belas, Bandar, Telok Panglima Garang, Dengkil, 

Ampang, Cheras, Petaling, Damansara, and Kajang. 

On the other hand, based on the COVID-19 deaths for a highly significant cold spot of 99% 

confidence level, new cases and cumulative cases have the exact location with the same 

considerable level: Ulu Bernam, Sungai Panjang and Pasir Panjang. Since new cases and 

cumulative cases contain the exact area of the most intense high and cold spot with COVID-19 

deaths, it can be said that new cases and cumulative cases contribute the most to COVID-19 deaths. 

Besides that, by overlaying the pattern of the outbreak in COVID-19 deaths (Figure 9) hotspot 

mapping with the other parameter (Figure 5, Figure 6, Figure 7, and Figure 8), there are eight 
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mukim detected as high-risk areas, which are Klang, Tanjong Dua Belas, Bandar, Telok Panglima 

Garang, Dengkil, Ampang, Cheras and Kajang. The significant hotspot of COVID-19 death occurs 

due to the high value of COVID-19 cases, which are new cases and cumulative cases. On the other 

hand, those eight mukim tend to have significant hotspots because of the high population density. 

Ganasegeran et al. stated in 2022 that their study confirmed that population density directly 

correlated with COVID-19 infections. Hence, these eight mukim can be recognized as the areas 

that should receive more attention, have more impact, and are highly susceptible in the near future. 

 

5.0 Conclusion and Recommendations 

5.1 Conclusion 

In this study, data processing and analysis were performed using ArcMap 10.4, the Getis–Ord Gi* 

and Global Moran’s I model being the main tools. The main objective of this study has been 

achieved where the hotspot map has been generated and to analyze that new and cumulative cases 

are contributing to higher COVID-19 deaths. The main objective can be achieved by assisting the 

other two objectives, which are determining the parameters for the hotspot analysis and developing 

a geospatial database for the hotspot analysis. The study parameters have been identified: new 

cases, cumulative cases, number of death cases, number of clusters and population density, with 

the number of deaths as a primary parameter. 

Throughout this study, it is shown that the most challenging part in this study is the data 

collection phase. This phase is the most difficult because there is a bunch of COVID-19 data for 

five months in each district that needs to be collected and processed. Hence, applying technology 

nowadays teaches people how to work more efficiently and quickly. 

The outcome of this study, which is the hotspot analysis of COVID-19, is important because 

it can help to identify areas with high risk and low risk, and the government and citizens can take 

preventive steps in risky areas. Other than that, the current study of hotspot analysis can help to 

recognize which places in a study area should receive more attention, which locations are more 

impacted, and which areas are highly susceptible in the near future. 

 

5.2 Recommendations 

Many things can be fixed and improved in this study to make it more helpful for people. Hence, 

this section will provide recommendations for future studies. For this study, it is recommended that 



 

185 

another parameter, the population of older adults, be added to determine whether it can contribute 

to COVID-19 deaths. This parameter cannot be added to this study because the latest data on older 

adults in the Selangor district has not yet been updated, wherein the only data found was collected 

in 2010. On the other hand, it would be more beneficial if this study were done based on the latest 

scope of time or hotspot on live cases. Since this study began in 2021, it can only provide data for 

that year. 
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