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_________________________________________________________________________________________________ 

 

Abstract - Rivers and riparian areas are vital components of ecosystems, but accurately modeling their terrain presents 

challenges, especially in detecting the river surface. This paper proposes an integrated approach that combines UAV 

LiDAR and Single Beam Echo Sounder (SBES) data to construct a Digital Terrain Model (DTM) of river and riparian 

areas. The objective is to overcome the limitations posed by water, which absorbs near-infrared laser energy, resulting in 

weak or absent LiDAR returns. Different UAV LiDAR densities were examined to determine the optimal configuration 

for capturing riparian areas. Evaluation of the results utilized various metrics, including root mean square error (RMSE), 

mean square error (MSE), mean absolute error (MAE), mean bias error (MBE), and correlation coefficient (CC). Three 

ground filtering methods were implemented and assessed: morphological filters, adaptive triangulated irregular network 

(ATIN) filtering, and above-ground level (AGL) filtering. Among the evaluated methods, the DTM constructed using 

ATIN with an 80-meter flight configuration yielded the most accurate results. It achieved an RMSE of 0.18m, an MSE of 

0.03m, an MAE of 0.17m, an MBE of 9.08m, and a CC of 1.00. Comparatively, other methods exhibited higher error 

values and lower correlation coefficients. The findings highlight the efficacy of ATIN filtering in conjunction with an 80-

meter UAV LiDAR flight for obtaining reliable DTMs of river and riparian areas. This approach demonstrates significant 

improvement in accuracy, particularly in terms of RMSE and MSE. The derived DTM can be a valuable tool for 

safeguarding and managing these critical ecosystems. In summary, this paper successfully addresses the challenge of 

modeling river and riparian terrains by integrating UAV LiDAR and SBES data. By employing ATIN filtering with an 80-

meter flight configuration, the study achieves a highly accurate DTM. By employing ATIN filtering with an 80-meter 

flight configuration, the study achieves a precise, high DTM with minimal error. The developed model contributes to 

protecting and preserving river and riparian ecosystems. 
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1.0 Introduction 

The construction of Digital Terrain Models (DTM) for river and riparian areas is important for 

various applications such as flood risk assessment, river channel maintenance, erosion analysis 

and habitat restoration (Akihisa et al., 2011). However, obtaining accurate and detailed DTMs 

for these areas is challenging due to the complex topography and vegetation cover (Nedjati et 

al., 2015). One such area is the Seblak River in Sarawak, Malaysia, where the water is known 

to be cloudy, and the river is affected by tides, making it difficult to obtain accurate topographic 

information on the riverbed using traditional methods such as ground-based surveying and 

photogrammetry (Lin et al., 2011). 

Recent advancements in Unmanned Aerial Vehicle (UAV) technology have 

revolutionized DTM construction by facilitating the acquisition of high-resolution topographic 

data in previously inaccessible areas. Among the various UAV-based techniques, UAV Lidar 

stands out for its ability to deliver high-resolution datasets even with low point density, making 

it a preferred choice for DTM construction (Meng et al., 2010). However, despite its prowess, 

UAV Lidar alone may not adequately capture the intricate topography of rivers and riparian 

zones, especially in regions characterized by dense vegetation, murky water, and tidal 

influences (Nedjati et al., 2015). 

One technique that complements UAV Lidar is the Single Beam Echo Sounder (SBES), 

renowned for its capability to map riverbeds and riparian areas meticulously. SBES emits a 

single sound beam to measure water depth, providing invaluable insights into the underwater 

landscape, including detecting features like sandbars and gravel bars (Akihisa et al., 2011). 

However, challenges arise in environments like the Seblak River, where cloudy water and tidal 

effects can compromise the accuracy of SBES data due to issues such as turbidity, signal 

attenuation, and interference. 

Recognizing the complementary strengths and limitations of UAV Lidar and SBES, 

their integration offers a compelling solution for mapping riparian areas with enhanced accuracy 

and detail (Meng et al., 2010). Combining UAV Lidar’s prowess in capturing terrestrial 

topography with SBES’s proficiency in mapping underwater features can better understand the 

riverbed morphology and riparian landscape (Zhang et al., 2020). This integrated approach 

identifies intricate features that may elude detection by either technique alone. 

Pre-processing steps such as above-ground filtering (AGL) are required to enable 

accurate terrain information. AGL is a technique for isolating specific elements from lidar data, 

such as buildings, vegetation, and other above-ground features. Its purpose is to distinguish the 

ground surface from objects (Axelsson, 2000). Triangulated Irregular Network (TIN) is a 
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popular DTM creation method from point cloud data, particularly for natural terrain and 

hydrological applications. This method creates a triangular network of points, connecting each 

point to its nearest neighbours. This creates a smooth surface that represents the terrain and 

allows for the generation of contours and other derived products. TIN is beneficial for handling 

large datasets and creating DTMs in steep or rugged terrain (Meng et al., 2010). However, TIN 

can make a surface that is too smooth, losing fine-scale details and small features such as small 

islands and channels in the riverbed (Hudson & Harrison, 2016). 

Morphological filtering is another method to filter point clouds to remove noise and 

outliers (Meng et al., 2010). This method uses mathematical morphology operations, such as 

erosion and dilation, to identify and remove points that do not belong to the terrain surface 

(Zhang et al., 2020). Morphological filtering can help remove vegetation, buildings, and other 

non-terrain features from the point cloud data. It can also filter out noise and outliers caused by 

measurement errors or other factors. However, it can also remove important features, such as 

small islands and channels in the riverbed, primarily when aggressive filtering is used (Zhang 

et al., 2020). 

DTM generation algorithms have partially replaced human interpolation and become a 

post-processing step after the data acquisition from these remote sensing systems. According to 

Maguya et al. (2014), this phase is usually divided into classification and interpolation. The 

classification step extracts the bare earth information (such as elevation, intensity, multiple-

returns, or some calculated features like average vector segments) from the acquired data, 

automatically classifying the gathered data into terrain and off-terrain. This process is known 

as “filtering” in the airborne laser scanning community. Subsequently, the DTM can be 

generated by interpolating the extracted terrain data (Maguya et al., 2014). 

Several methods have been proposed to assess the quality of DTMs. Root mean square 

error (RMSE) and mean signed error (MSE) are commonly used statistical measures for 

evaluating DTM accuracy. Previous research extensively relies on RMSE to gauge the accuracy 

of DTMs derived from remote sensing techniques like Lidar and photogrammetry. A lower 

RMSE value indicates a more substantial alignment between predicted and reference values, 

signifying higher accuracy. Similarly, MSE serves as another crucial metric, measuring the 

average disparity between predicted and reference DTM values. This measure is valuable for 

comparing different filtering or processing techniques, highlighting their effectiveness in 

minimizing DTM errors. 

Meanwhile, mean absolute error (MAE) is often employed alongside RMSE and MSE 

to offer comprehensive insight into DTM accuracy and precision. MAE complements RMSE 
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by capturing the average error magnitude, with lower values indicating higher accuracy and 

agreement. Mean bias error (MBE), or mean error (ME), provides insights into the systematic 

bias of a DTM, indicating whether it consistently overestimates or underestimates ground 

elevation. Lastly, the correlation coefficient (CC) evaluates the linear relationship between 

predicted and reference DTM values. By quantifying the strength and direction of this 

correlation, CC offers valuable insights into the consistency and reliability of the DTM. These 

measures collectively contribute to a robust assessment of DTM quality, aiding in informed 

decision-making and interpretation of terrain data. 

The study aims to acquire LiDAR and SBES data at various densities over the Seblak 

River in Sarawak. It intends to construct DTM using a combination of UAV LiDAR data of 

different densities, SBES data, and various LiDAR ground filtering methods. The evaluation of 

the DTMs will be based on ground checkpoints.  

 

2.0 Material and Methods 

The study area in Kampung Sungai Benang, Daerah Kabong, Bahagian Betong, Sarawak, 

Malaysia, is known for its peat swamp forest and brackish river water (Figure 1). The size of 

the study area is 2 km2. The number of ground checkpoints is 36. As noted in a previous study, 

the Seblak River is characterized by cloudy water and an active riparian zone. 

 

 

Figure Error! No text of specified style in document.. Location of study area 
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2.1 Flowchart 

The methodology of this study comprises three primary phases: data acquisition, DTM 

construction and analysis, and accuracy assessment. In the data acquisition phase, various 

density UAV LiDAR and SBES data are collected from the study area in Kampung Sungai 

Benang, Daerah Kabong, Bahagian Betong, Sarawak, Malaysia. Subsequently, in the DTM 

construction and analysis phase, the acquired data undergoes processing and integration 

utilizing different LiDAR ground filtering methods, such as TIN and morphological filtering, 

to produce the DTM. This phase involves intricate data manipulation and combination 

techniques to represent the terrain comprehensively. 

Finally, the accuracy assessment phase involves the evaluation of the generated DTM 

using ground checkpoints. These checkpoints serve as reference data to validate the accuracy 

and reliability of the DTM. The methodology flowchart, depicted in Figure 2, delineates the 

step-by-step workflow of the research methodology. 

 

 

Figure 2. Research methodology flowchart 
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2.2 Data Acquisition (Phase 1) 

Data acquisition is important in constructing an accurate DTM. Two methods, UAV Lidar and 

SBES, were utilized for data collection. The UAV Lidae data was acquired using a DJI Matrice 

600 Pro (Figure 3) and a gAirHawk Air Eagle GS-260S (Figure 4), equipped with high-

resolution LiDAR sensors capable of capturing dense point clouds. These UAV systems offered 

versatility in various environmental conditions, including challenging scenarios like cloudy 

water bodies. 

For SBES data collection, CHC D390 Side Mounted Units (Figure 5) and CHC D390 

topside (Figure 6) were employed. These systems were specifically designed for shallow waters 

and provided high-resolution data with a dense point density, ensuring precise measurements. 

A GNSS Receiver (SATLAB SL700) (Figure 7) was utilized for multiple purposes, including 

collecting ground checkpoints for accuracy assessment and serving as a base GNSS RTK for 

the LiDAR and SBES systems. A total of 3240 SEBS data were collected and used. 

The study area’s topography was comprehensively understood by integrating data from 

UAV LiDAR, SBES, and the GNSS Receiver. The data collection phase was completed on 

March 23, 2023, during which data was acquired using the specified instruments and techniques. 

Subsequently, the collected data was utilized to construct the DTM of the study area, ensuring 

a detailed representation of its topographic features. A total of 7,971,133 LiDAR point clouds 

were collected using this system.  

 

 

Figure 3. DJI Matrice 600 Pro Figure 4. gAirHawk Air Eagle GS-260S 
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Figure 5. CHC D390 Side Mounted Units Figure 6. CHC D390 topside 

 

Figure 7. GNSS Receiver (SATLAB SL700) 

 

2.2 Pre-Processing (Phase 2) 

Data pre-processing encompasses several essential steps to prepare the collected SBES and 

ground checkpoint data for integration and analysis. The initial stage involves converting the 

existing SBES and ground checkpoint data formats into a standardized format compatible with 

other project data, such as .las files. This conversion can be efficiently performed using 

Microsoft Excel by uploading the raw SBES data in .CSV format and saving the file in the 

desired format. 

For the UAV Lidar data, pre-processing entails the removal of floating points within the 

point clouds. Often regarded as error points, these points do not correspond to any features in 

the real world and can adversely affect data accuracy. In this project, several hundred floating 

points were identified and eliminated before proceeding to subsequent processing steps (Figure 

8). There is a total of 215,734 floating points, and they were removed. 
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Figure 8: Removing floating points 

 

After the initial removal of floating points, the pre-processing of Lidar data continues 

with more specific filtering methods, mainly targeting the extraction of ground points. This 

study’s objective includes exploring various ground filtering techniques, including adaptive 

TIN (ATIN), morphological filtering, and AGL filtering. 

The ATF (ATIN) technique utilized a TIN algorithm and a morphological filter to 

selectively eliminate outliers and noise from the Lidar point cloud data. Initially, the TIN 

algorithm triangulates the point cloud data, creating a mesh of irregular triangles representing 

the terrain surface. Subsequently, the morphological filter is applied to identify and remove 

outliers and noise based on the slope and height characteristics of the terrain (Figure 9). 
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Figure 9. ATIN-filtered UAV Lidar data 

  

A morphological filter technique and free, open-source software, ALDPAT, were used 

to filter the ground. There are five filtering techniques provided by ALDPAT: Elevation 

Threshold with Expand Window (ETEW), Morphological, Slope, Polynomial, and Adaptive 

TIN filter (Figure 10). 

 

 

Figure 10. Morphologically filtered ground data 

 

AGL filtering is a crucial step in the data processing workflow, aiming to remove non-

ground objects and retain the ground surface information in the DTM (Figure 11). This 
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subsection explains the AGL filtering process in-depth, including determining the threshold 

value and its implications for DTM accuracy. 

 

 

Figure 11. AGL filtered data 

 

The last pre-processing step is combining point clouds. The point clouds obtained from 

the UAV Lidar and SBES data will be combined to create a comprehensive DTM for the study 

area (Figure 12). This process involves merging the point clouds from the two data sources into 

a single point cloud. This is done by aligning the point clouds using common points and a 

registration algorithm to ensure that the point clouds are accurately aligned. Once the point 

clouds are aligned, they are combined to form a single point cloud representing the entire study 

area. 

Table 1 provides information on the number of point cloud data points at different 

processing stages after applying various filtering methods: ATIN, AGL filtering, and 

morphological filtering. Initially, over 7 million data points were collected. However, after 

filtering, about 3 million cloud data points remain for each filtering method. 
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Figure 12. Combining ground-filtered UAV Lidar and SBES data 

 

Table 1. Number of point clouds after filtering 

Point Cloud ATIN AGL Morphological filter 

RAW 7,971,133 7,971,133 7,971,133 

Pre-Processing 7,755,399 7,755,399 7,755,399 

Filtering 3,458,772 3,165,739 3,345,629 
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2.3 DTM Generation (Phase 3) 

Generation of a digital terrain model (DTM) is one of the main steps in this study. The DTM is 

generated using SURFER software. The interpolation method used for generating the DTM is 

kriging, and the pixel size of the DTM is 1 meter. This step is repeated six times for all, and six 

generated DTMs were used for this study.  

 

2.4 Accuracy Assessment (Phase 4) 

2.4.1 Quantitative analysis 

Quantitative analysis plays a crucial role in this study, enabling the evaluation of the accuracy 

of the generated DTM. Five quantitative analysis methods were employed, including calculating 

RMSE, MSE, MAE, MBE, and CC. These metrics provide valuable insights into the vertical 

accuracy of the DTM by comparing it with the ground truth measurements obtained from the 

ground checkpoints. A total of 36 ground checkpoints were used in this quantitative assessment. 

RMSE is a widely used metric for quantifying the overall discrepancy between the 

elevations obtained from the DTM and the ground checkpoints. It measures the average 

magnitude of the differences in the z-coordinate values. The RMSE calculation formula is as 

follows: 

 

𝑅𝑀𝑆𝐸 =  √
∑(𝐷𝑇𝑀 −  𝐺𝑟𝑜𝑢𝑛𝑑)2

𝑛
 

 

MSE is a metric that quantifies the average squared differences between the DTM 

elevations and the ground checkpoints. It measures the overall error magnitude, capturing both 

systematic and random errors. The MSE calculation formula is as follows: 

 

𝑀𝑆𝐸 =
(∑(𝐷𝑇𝑀 −  𝐺𝑟𝑜𝑢𝑛𝑑)2)

𝑛
 

 

Both RMSE and MSE assess the overall accuracy and goodness-of-fit of the DTM. 
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MAE is a metric that calculates the average absolute differences between the DTM 

elevations and the ground checkpoints. It provides insights into the average magnitude of the 

errors, irrespective of their direction. The MAE calculation formula is as follows: 

 

𝑀𝐴𝐸 =
(∑|𝐷𝑇𝑀 −  𝐺𝑟𝑜𝑢𝑛𝑑|)

𝑛
 

 

By calculating MAE, the average absolute deviation between the DTM and the ground truth 

elevations can be quantified, providing a measure of the DTM’s vertical accuracy. Mean Bias 

Error (MBE) is employed to evaluate the average difference or bias between the DTM 

elevations and the ground checkpoints. It measures the systematic error present in the DTM, 

indicating whether there is a consistent overestimation or underestimation. The MBE 

calculation formula is as follows: 

 

𝑀𝐵𝐸 =
(∑(𝐷𝑇𝑀 −  𝐺𝑟𝑜𝑢𝑛𝑑))

𝑛
 

 

Any systematic bias in the DTM can be determined by calculating MBE, and its reliability for 

various applications can be assessed. Correlation Coefficient (CC) is a statistical metric 

quantifying the linear relationship between the DTM elevations and the ground checkpoints. It 

measures the strength and direction of the relationship, ranging from -1 to +1. CC can be 

calculated using various methods, such as Pearson’s or Spearman’s rank correlation coefficient. 

By analyzing the CC, we can assess the level of agreement and correlation between the DTM 

and the ground truth elevations. 

 

2.4.2 Qualitative Assessment 

In addition to quantitative metrics, a qualitative assessment is essential to evaluate the visual 

accuracy and overall quality of the generated DTMs (Figure 13). This section visually compares 

the six different DTMs with the corresponding orthophoto of the study area. This visual 

assessment allows for a more intuitive understanding of the performance and suitability of each 

DTM. 
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Figure 13. Qualitative assessment between generated DTM and orthophoto via side feature in 

global mapper 

 

3.0 Results and Discussion 

The results for each method were presented individually, and their respective accuracies will be 

explained in detail. Additionally, 3D plots of the generated DTMs are included to visualize the 

terrain representation. DTMs in these studies were generated using different UAV Lidar and 

SBES data densities. What makes this DTM unique compared to others is the integration of 

these two methods, which is novel in the geoscience community. Figures 14 to 19 show six 

DTM models generated in 3D plots. 
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Figure 14. 3D plot of ATIN filtering at 80m flight height 

 

 

Figure 15. 3D plot of ATIN filtering at 150m flight height 
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Figure 16. 3D plot of morphological filtering at 80m flight height 

 

 

Figure 17. 3D plot of morphological filtering at 150m flight height 
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Figure 18. 3D plot of AGL filtering at 80m flight height 

 

 

Figure 19. 3D plot of AGL filtering at 150m flight height 
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3.1 Quantitative Assessment 

In this section, the accuracy of the generated DTMs was assessed by evaluating the RMSE 

metric. The RMSE measures the average vertical deviation between the generated DTM and 

the reference data, with lower values indicating higher accuracy in representing the terrain 

characteristics. 

 

Table 2. RMSE results for different data/analysis combinations 

Data/Analysis RMSE (m) 

150Morph_K 0.23 

80Morph_KR 0.32 

150ATIN_KR 0.26 

80ATIN_KR 0.18 

150AGL_KR 0.39 

80AGL_KR 0.30 

 

Based on Table 2, the best result in terms of RMSE was observed for the 80ATIN_KR 

analysis, with an RMSE value of 0.18m. This result indicates a relatively low average vertical 

deviation between the generated DTM and the reference data, suggesting a high level of 

accuracy in representing the terrain features. On the other hand, the 150AGL_KR analysis 

exhibited the highest RMSE value of 0.39m, indicating a slightly higher average vertical 

deviation compared to the different data/analysis combinations. The variation in RMSE values 

can be attributed to factors such as the choice of ground filtering methods, flight heights, and 

the specific terrain characteristics being analyzed. Despite some variations, all the RMSE values 

fall within an acceptable range, indicating accurate DTMs. Next is the MSE, as tabulated in 

Table 3. 

 

Table 3. Analysis of MSE 

Data/Analysis MSE (m) 

150Morph_K 0.05 

80Morph_KR 0.10 

150ATIN_KR 0.07 

80ATIN_KR 0.03 

150AGL_KR 0.16 

80AGL_KR 0.009 
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The table above summarizes the MSE values obtained for each filtering method. Among 

the results, the 80ATIN_KR filtering method achieved the lowest MSE value of 0.03m, 

indicating high accuracy in capturing the elevation values. Conversely, the 80AGL_KR filtering 

method exhibited the highest MSE value of 1.63m, suggesting a higher deviation between the 

generated DTM and the reference data. The superior performance of the 80ATIN_KR result, 

characterized by its lower MSE value, can be attributed to its effective filtering algorithm and 

optimized parameter selection. On the other hand, the higher MSE value observed for the 

80AGL_KR result may stem from factors such as noise in the data, suboptimal filtering 

parameters, or limitations of the filtering algorithm employed. The Mean Absolute Error (MAE) 

is another important evaluation metric for DTMs, quantifying the average absolute difference 

between the elevation values of the generated DTM and the reference data. It provides insights 

into the overall accuracy and precision of the models. 

 

Table 4. Analysis of MAE 

Data/Analysis MAE (m) 

150Morph_K 0.19 

80Morph_KR 0.31 

150ATIN_KR 0.25 

80ATIN_KR 0.17 

150AGL_KR 0.38 

80AGL_KR 0.30 

 

The table above presents the MAE values obtained for each filtering method. Notably, 

the 80ATIN_KR filtering method achieved the lowest MAE value of 0.17m, indicating higher 

accuracy in capturing the elevation values. Conversely, the 150AGL_KR filtering method 

exhibited the highest MAE value of 0.38m, suggesting a higher deviation between the generated 

DTM and the reference data. The superior performance of the 80ATIN_KR result, characterized 

by its lower MAE value, can be attributed to its effective filtering algorithm and optimized 

parameter selection. Conversely, the higher MAE value observed for the 150AGL_KR result 

may be influenced by various factors, including limitations of the filtering method, suboptimal 

flight height, or specific characteristics of the river and riparian areas. 

The MBE is a metric to assess the systematic bias in the generated DTMs. It measures 

the average difference between the elevation values of the DTM and the reference data, 

providing insights into the models’ overall accuracy and potential biases. 
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Table 5. Analysis of MBE 

Data/Analysis MBE (m) 

150Morph_K 9.17 

80morph_KR 8.51 

150ATIN_KR 8.77 

80ATIN_KR 9.06 

150AGL_KR 8.23 

80AGL_KR 8.56 

 

The table above summarizes the MBE values obtained for each filtering method. The 

80morph_KR filtering method achieved the lowest MBE value of 8.51m, indicating a relatively 

lower systematic bias in capturing the elevation values. On the other hand, the 150Morph_K 

filtering method exhibited the highest MBE value of 9.17m, suggesting a relatively higher 

systematic bias between the generated DTM and the reference data. Further analysis and 

interpretation are required to understand the reasons behind the observed variations in MBE 

results. Data quality, filtering algorithms, flight height, and terrain characteristics may 

contribute to the differences observed. These factors should be carefully considered to improve 

the accuracy and mitigate potential biases in future DTM generation. The last analysis is CC, 

as tabulated in Table 6. 

 

Table 6. Analysis of CC 

Data/Analysis CC 

150Morph_K 1.00 

80morph_KR 1.00 

150ATIN_KR 1.00 

80ATIN_KR 1.00 

150AGL_KR 0.99 

80AGL_KR 1.00 

 

The table above presents the CC values obtained for each filtering method. Notably, 

most filtering methods achieved a strong correlation (CC value of 1.00) between the generated 

DTM and the reference data, indicating a high level of consistency. The 150AGL_KR filtering 

method exhibited a slightly lower CC value of 0.99, suggesting a strong correlation but with a 

minor deviation from perfect linearity. The high CC values observed for most filtering methods 

indicate the accuracy and reliability of the generated DTMs in capturing the elevation values of 
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the river and riparian areas. However, the slightly lower CC value for the 150AGL_KR result 

may be attributed to factors such as noise in the data, suboptimal filtering parameters, or 

variations in the terrain characteristics. 

 

3.2 Qualitative Assessment 

This section conducted a qualitative analysis to assess the visual quality and suitability of six 

different Digital Terrain Models (DTMs), as shown in Table 7. 

 

Table 7: Qualitative Assessment 

Ranking DTM Filtering Method Visual Assessment 

1 80m Morphological (Morph) Excellent alignment with orthophoto 

2 80m ATIN Good representation of terrain 

3 150m Morphological (Morph) Satisfactory representation 

4 150m ATIN Noticeable discrepancies 

5 80m Above Ground Level (AGL) Inconsistencies with orthophoto 

6 150m Above Ground Level (AGL) Discrepancies with orthophoto 

 

 

3.3 Optimum Result Based on Accuracy Assessment 

This section analyzed the overall analysis of the DTMs generated for river and riparian areas 

using different filtering methods. The study aims to evaluate the accuracy and performance of 

the six DTMs by comparing the results obtained from various analysis metrics, including 

RMSE, MSE, MAE, MBE, CC and visual assessment. 

 

Table 8: Summary of Analysis Results and Overall Ranking of Filtering Method 

Overall Ranking DTM Filtering Method 

1 80m ATIN 

2 80m Morphological (Morph) 

3 150m Morphological (Morph) 

4 150m ATIN 

5 80m Above Ground Level (AGL) 

6 150m Above Ground Level (AGL) 
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Based on Table 8, the overall findings indicate that the 80m ATIN filtering method 

exhibited superior performance to the other methods evaluated. This suggests that adaptive 

filtering algorithms like ATIN can extract ground points and produce accurate DTMs in these 

environments. One key aspect that contributed to the success of the 80m ATIN method is the 

flight height. The 80-meter flight height proved to be more suitable for capturing detailed terrain 

features and achieving higher accuracy than the 150-meter flight height. This finding highlights 

the importance of carefully considering flight parameters during data acquisition to optimize 

DTM generation in river and riparian areas. 

The observed performance variations among the filtering methods can be attributed to 

their underlying principles and algorithms. Morphological filtering methods consider the terrain 

characteristics and shape, such as the 80m Morph and 150m Morph. While these methods 

generally performed well in terms of accuracy, they may encounter limitations in capturing 

complex terrain features accurately, leading to slightly higher errors. On the other hand, the 

ATIN filtering methods, including the 80m ATIN and 150m ATIN, demonstrated strong 

performance in terms of accuracy measures. These methods utilize adaptive algorithms that 

account for specific flight altitudes, allowing for more precise ground point extraction and DTM 

generation. The ATIN approach effectively captured terrain details and produced accurate 

DTMs in river and riparian areas. 

It is important to acknowledge that the accuracy of the generated DTMs is influenced 

by various factors beyond the filtering methods, including the quality of the input data, data 

processing techniques, and environmental conditions. Further refinements in data acquisition 

techniques, such as improving the resolution and density of the input data and advancements in 

filtering algorithms, could potentially enhance the accuracy and reliability of DTMs in these 

environments. 

 

4.0 Conclusion and Recommendation 

The study focused on the accuracy and alignment of the DTM with reference data. Among the 

methods evaluated, the 80m ATIN filtering method exhibited the highest overall accuracy, 

demonstrating excellent alignment with the orthophoto. The 150m ATIN method showed 

noticeable discrepancies and lower accuracy. The 80m Morphological method outperformed 

the 150m Morphological method but still had slightly higher errors than the 80m ATIN method. 

The 80m AGL method displayed inconsistencies and lower accuracy, as did the 150m AGL 

method. The generated DTMs hold significant value for government agencies involved in land 
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management, environmental monitoring, and flood risk assessment. They can support decision-

making processes, infrastructure planning, and environmental management strategies. 

Despite the positive outcomes, certain limitations should be acknowledged. The study 

used data from only two flight heights, and expanding the dataset to include more altitudes or 

densities would improve generalizability. Additionally, the research solely relied on an SBES 

for data collection, and future studies should consider incorporating multi-beam echo sounder 

(MBES) data to enhance coverage and accuracy. The research also used kriging as the 

interpolation method. However, exploring alternative methods like inverse distance weighting 

or spline interpolation can provide insights into their suitability for DTMs in river and riparian 

areas. 

Several recommendations for future studies are proposed based on the findings and 

limitations. These include incorporating data from various altitudes or densities, exploring the 

use of MBES for improved coverage, and investigating alternative interpolation methods to 

refine the accuracy of DTMs. By considering these recommendations, future research can 

enhance the understanding and construction of DTMs in river and riparian environments. 
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