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_________________________________________________________________________________________________ 

 

Abstract - The cultivation of oil palm (Elaeis guineensis) is globally significant, particularly in tropical regions, due to the 

diverse applications of palm oil and palm kernel oil. This necessitates precise monitoring for sustainable management 

amidst escalating demand. This study aims to develop an annually updated Oil Palm Age Database (OPAD) using 

multisource remote sensing data to predict the oil palm age, a critical factor affecting productivity and environmental 

sensitivity. By comprehensively analyzing multisource remote sensing data from 1982 to 2023, this study establishes 

OPAD and validates its reliability using a random forest classifier. The findings reveal the relationship between remote 

sensing data features and changes in the oil palm age, offering insights into sustainable management practices. The results 

indicate an overall accuracy of 86.86 ± 0.92% for grouped age (i.e., seed (1-2 years), young (3-8 years), teen (9-14 years), 

mature (15-25 years), and post-mature (over 25 years)), with features such as GEDI forest height, ScanSAR HH SAVG, 

Planet NIR, and Planet Blue being instrumental in age prediction. Integrating optical, synthetic aperture radar (SAR), and 

canopy height data enables effective age prediction, which is essential for optimizing management strategies, assessing 

yield potential, and mitigating environmental impacts. 
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1.0 Introduction 

The cultivation of oil palm (Elaeis guineensis) has become a pivotal component of the global 

agricultural landscape, particularly in tropical regions (Cheng et al., 2018; Rizeei et al., 2018; 

Zhao et al., 2024). Oil palm products, including palm oil and palm kernel oil, are extensively 

utilized across various industries, ranging from food and cosmetics to biofuels and 

pharmaceuticals (Li et al., 2018; Mohd Najib et al., 2020; Xu et al., 2020). The substantial 

economic contributions of the oil palm industry have led to significant expansion of oil palm 

plantations, especially in Malaysia and Indonesia (Cheng et al., 2016; Xu et al., 2020). As the 

demand for palm oil continues to rise, there is an increasing emphasis on sustainable oil palm 

management practices, which require accurate monitoring and assessment of oil palm 

plantations and their associated vegetation dynamics (Pohl et al., 2016; Shafri et al., 2012). 

The age of oil palm trees is crucial in determining their productivity and vulnerability to 

pests, diseases, and environmental stressors (Hamsa et al., 2019; Tridawati et al., 2018). 

Understanding the spatial distribution of oil palm age across plantations is vital for optimizing 

management strategies, assessing yield potential, and mitigating environmental impacts (Chong 

et al., 2017; Darmawan et al., 2021). Tan et al. (2013) identified oil palm age as a significant 

factor influencing fruit bunch production. However, large-scale predictions of oil palm age 

using manual sampling methods are inefficient. Remote sensing data has emerged as a critical 

tool for predicting oil palm age, facilitated by the segmented planting of oil palms in plantations, 

allowing for studying oil palm age (Chemura et al., 2015; Hamsa et al., 2019). 

A substantial body of research has utilized remote sensing data to predict the age of oil 

palm trees. As documented in prior research, various studies have mapped the oil palm age 

(Chong et al., 2017; Tan et al., 2013). Commonly employed remote sensing methods in oil palm 

tree age research include tree crown segmentation using multispectral and high-resolution 

remote sensing imagery, classification based on vegetation indices and texture features, and the 

integration of temporal remote sensing data for change detection and growth model 

establishment (Camacho et al., 2019; Mohd Najib et al., 2020). 

The intricate relationship between oil palm age and spectral bands in optical remote 

sensing data provides insights into the growth status, health conditions, and ecological 

influences on oil palm vegetation (Mohd Najib et al., 2020). Researchers have employed optical 

band ratios or biophysical parameters of oil palm, such as leaf area, canopy cover, and stem 

height, fitted against oil palm age, selecting indicators with solid correlations to estimate oil 

palm age (Chemura et al., 2015; McMorrow, 2001). For instance, the infrared bands primarily 

reflect vegetation’s water content and structure. With increasing oil palm age, vegetation water 
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content and structure variations may influence the infrared bands’ reflectance (Tridawati et al., 

2018). Optical remote sensing data can also characterize vegetation growth and health 

conditions through the computation of spectral indices, such as the Normalized Difference 

Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI), which can reflect vegetation 

greenness and vigour, potentially correlate with oil palm age. Sitorus. (2010) found a significant 

correlation between Landsat TM bands and oil palm age, especially in the B5 (shortwave 

infrared 1) band, as well as with the Infra-Red index (IRI) and Middle Infra Red Index (MIRI). 

Estimating the age of oil palm trees using Synthetic Aperture Radar (SAR) data is 

considered superior to optical remote sensing data. SAR, an active remote sensing technology, 

can acquire surface information under various ground and weather conditions. During the 

growth process of oil palm trees, their structure and physical characteristics change with age, 

which is reflected in the bands and texture features of SAR data (Darmawan et al., 2021; Mohd 

Najib et al., 2019). Different bands of SAR data reflect different surface characteristics. For 

example, VV-polarized images are generally more sensitive to the vertical components of 

vegetation structure, while HH-polarized images are better at capturing horizontal surface 

features. As the oil palm age increases, its structure becomes more complex, leading to changes 

in the reflection characteristics of SAR data bands. 

Additionally, the texture features of SAR data are closely related to oil palm age (Avtar 

et al., 2013; Hamsa et al., 2019; Tan et al., 2013). Changes in the morphology, density, and 

distribution of the canopy during the growth process of oil palm age affect the texture features 

of SAR data. Avtar et al. (2013) utilized multi-frequency, multi-polarization SAR data to 

monitor oil palm growth stages in Sarawak, Malaysia, finding that PALSAR data with HV 

polarization exhibited the highest sensitivity to oil palm age. By analyzing the texture features 

of SAR data, the distribution and growth status of oil palm age can be inferred. 

This study will comprehensively analyze oil palm age distribution and related vegetation 

characteristics using multisource remote sensing data. By integrating literature data and remote 

sensing information on the oil palm age from 1982 to 2023, an annually updated oil palm age 

database (OPAD) is generated. Utilizing Google Earth Engine enables the extraction of 

multisource remote sensing data, including optical, SAR, and canopy height information, 

facilitating detailed analysis of remote sensing data features for different age groups of oil palm. 

This study provides a basis for sustainable oil palm management practices and land use planning 

by elucidating the multisource remote sensing information characteristics of oil palm age 

variations. The reliability of OPAD is evaluated using a random forest classifier to ensure its 

suitability for further analysis and application. 
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2.0 Materials and Methods 

2.1 Annually updated oil palm age database (OPAD) 

We compiled oil palm age data from multiple studies and calibrated it using high-resolution 

remote sensing data to ensure accuracy. The goal was to assemble a comprehensive dataset 

spanning various years and geographical regions, encompassing a wide range of oil palm age 

categories. As detailed in Table 1, we obtained 1041 oil palm samples from six plantations 

across four studies. We extended these samples into long-term time series by correlating them 

with high-resolution satellite imagery from Google Earth, identifying the initial year of oil palm 

planting at each sample point and any subsequent replanting events. We constructed the OPAD, 

which is annually updated from 1982 to 2023. 

 

 

Figure 1. Flowchart of establishing annually updated oil palm age database (OPAD) 

 

Table 1. References on the age of oil palm trees 

Author_Location Count Reference 

Hamsa_Tereh Selatan estate-MAS 167 (Hamsa et al., 2019) 

Carolita_Asahan-IDN 206 (Carolita et al., 2019) 

Tan_Genting Kulai Besar Estate-MAS 42 (Tan et al., 2014) 

Tan_MPOB Kluang-MAS 195 (Tan et al., 2014) 

Tan_Sime Darby estate-MAS 322 (Tan et al., 2014) 

Toh_Padang Lekir-MAS 109 (Toh et al., 2019) 

Total 1041  

As illustrated in Figure 2, the samples we collected are spread across the Malay 

Peninsula and Sumatra Island. Five of the six sampling sites are located on the Malay Peninsula, 
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contributing 835 samples. Additionally, one site on Sumatra Island comprises 206 samples. In 

the studies conducted by Hamsa et al. (2019) and Carolita et al. (2019), age data were available 

for entire blocks within the plantations. Consequently, we manually collected samples within 

these blocks to accurately position them on the crowns of oil palm trees. However, it is essential 

to acknowledge that potential discrepancies in Google Earth imagery may affect the exactitude 

of these positions. In contrast, the studies by Tan et al. (2014) and Toh et al. (2019) provided 

precise field sampling data, with each sample point representing an individual oil palm tree 

collected directly from the field. These field-based samples offer a higher degree of accuracy in 

determining the age of oil palms. 

 

 

Figure 2. Samples of oil palm tree ages 
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2.2 Multisource remote sensing data 

To investigate the efficacy of various remote sensing data types in accurately determining oil 

palm age and to elucidate the correlation between these data features and changes in oil palm 

age, we have chosen a comprehensive set of seven remote sensing data types. This selection 

encompasses optical, SAR, and canopy height data, as detailed in Table 2.  

 

Table 2. Multisource remote sensing data used for studying the relationship with oil palm age 

Remote sensing data Source 

Optical 

Landsat 

(Landsat-5 

TM, Landsat-

7 ETM+, 

Landsat-8 

OLI), (since 

1972) 

https://developers.google.com/earth-

engine/datasets/catalog/landsat 

Planet-NICFI 

mosaics 

(since 2015) 

https://developers.google.com/earth-

engine/datasets/catalog/projects_planet-

nicfi_assets_basemaps_asia 

Harmonized 

Sentinel-2 

MSI (since 

2017) 

https://developers.google.com/earth-

engine/datasets/catalog/COPERNICUS_S2_SR_HARMONIZED  

SAR 

Sentinel-1 

SAR GRD 

(since 2014) 

https://developers.google.com/earth-

engine/datasets/catalog/COPERNICUS_S1_GRD  

Global 

PALSAR-

2/PALSAR 

Yearly 

Mosaic 

(2007-2010, 

2015-2020) 

https://developers.google.com/earth-

engine/datasets/catalog/JAXA_ALOS_PALSAR_YEARLY_SAR  

PALSAR-2 

ScanSAR 

Level 2.2 

(since 2014) 

https://developers.google.com/earth-

engine/datasets/catalog/JAXA_ALOS_PALSAR-

2_Level2_2_ScanSAR 

GEDI 

forest 

height 

Forest Extent 

and Height 

Change 

(2000-2020) 

https://glad.umd.edu/dataset/GLCLUC2020  

 

https://developers.google.com/earth-engine/datasets/catalog/landsat
https://developers.google.com/earth-engine/datasets/catalog/landsat
https://developers.google.com/earth-engine/datasets/catalog/projects_planet-nicfi_assets_basemaps_asia
https://developers.google.com/earth-engine/datasets/catalog/projects_planet-nicfi_assets_basemaps_asia
https://developers.google.com/earth-engine/datasets/catalog/projects_planet-nicfi_assets_basemaps_asia
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR_HARMONIZED
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR_HARMONIZED
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD
https://developers.google.com/earth-engine/datasets/catalog/JAXA_ALOS_PALSAR_YEARLY_SAR
https://developers.google.com/earth-engine/datasets/catalog/JAXA_ALOS_PALSAR_YEARLY_SAR
https://developers.google.com/earth-engine/datasets/catalog/JAXA_ALOS_PALSAR-2_Level2_2_ScanSAR
https://developers.google.com/earth-engine/datasets/catalog/JAXA_ALOS_PALSAR-2_Level2_2_ScanSAR
https://developers.google.com/earth-engine/datasets/catalog/JAXA_ALOS_PALSAR-2_Level2_2_ScanSAR
https://glad.umd.edu/dataset/GLCLUC2020
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The optical data utilized include Landsat (Landsat-5 TM [Thematic Mapper], Landsat-

7 ETM+ [Enhanced Thematic Mapper Plus], Landsat-8 OLI [Operational Land Imager]), 

Planet-NICFI [Norwegian International Climate and Forest Initiative] mosaics, and 

Harmonized Sentinel-2 MSI (Multispectral Instrument). SAR data employed consist of 

Sentinel-1 SAR GRD (Ground Range Detected), Global PALSAR-2/PALSAR (Phased Array 

type L-band Synthetic Aperture Radar) Yearly Mosaic, and PALSAR-2 ScanSAR Level data. 

PALSAR-2 ScanSAR data pertains to PALSAR-2 Wide Observation Mode normalized 

backscatter data, with an observation width of 350 km and a repeat frequency of approximately 

42 days (Rosenqvist et al., 2014). Oil palm tree height is sourced from GEDI (Global Ecosystem 

Dynamics Investigation) forest height data. 

To accurately assess oil palm age and explore the relationship between remote sensing 

data features and age variations, we selected seven types of remote sensing data, including 

optical, SAR, and canopy height data. We enhanced the precision of OPAD by extending the 

multisource remote sensing data to represent its characteristics better. We considered different 

spectral bands in optical remote sensing data and calculated the corresponding Normalized 

Difference Vegetation Index (NDVI) using the red and near-infrared bands. For SAR data, we 

examined various polarization bands and computed grey-level co-occurrence matrices for 

different bands to investigate the texture features of oil palms at different ages. We identified 

seven texture features used in the study: Difference Entropy (DENT), Dissimilarity (DISS), 

Inverse Difference Moment (IDM), Information Measure of Correlation 1 (IMCORR1), 

Information Measure of Correlation 2 (IMCORR2), Sum Average (SAVG), Sum Entropy 

(SENT). 

 

2.3 Remote sensing data features for tree age classification 

To ascertain the reliability of the OPAD, we employed random forests as our validation 

methodology. This method served dual purposes: it validated the precision of our dataset and 

quantitatively evaluated the correlation strength between the various remote sensing features 

and the age of oil palms. The dataset was partitioned, allocating 70% of the oil palm samples 

for training and reserving 30% for validation following the procedures detailed in Section 2.3. 

We conducted a total of 12 data validation sets, with each set undergoing ten repetitions to 

ensure the precision of our results. The average error and standard error for each validation set 

were meticulously calculated. 

Table 3 presents our analysis incorporating a robust suite of 46 remote sensing features. 

This collection included various spectral bands from optical data, complete with their respective 
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NDVI calculations. We also included data from multiple polarization bands of SAR, enriched 

with texture features computed from these bands. We integrated oil palm tree height data from 

the Global Ecosystem Dynamics Investigation (GEDI) Height dataset to enhance our dataset. 

Following the validation of the oil palm age data’s accuracy, we proceeded to rank the 

significance of each remote sensing feature to oil palm age prediction. 

 

Table 3. The multimodal remote sensing features 

Data Source Bands Index or Texture 

Landsat-8 

B1: Ultra blue  

B2: Blue  

B3: Green  

B4: Red 
NDVI 

B5: Near-infrared 

B6: Shortwave infrared 1  

B7: Shortwave infrared 2  

Planet-

NICFI 

B: Blue  

G: Green  

R: Red 
NDVI 

N: Near-infrared 

Sentinel-1 

SAR GRD 

VV: Single co-polarization, vertical 

transmit/vertical receive 

DENT, DISS, IDM, IMCORR1, 

IMCORR2, SAVG, SENT 

VH: Dual-band cross-polarization, 

vertical transmit/horizontal receive 

DENT, DISS, IDM, IMCORR1, 

IMCORR2, SAVG, SENT 

PALSAR-2 

ScanSAR 

HH: Single co-polarization, horizontal 

transmit/horizontal receive 

DENT, DISS, IDM, IMCORR1, 

IMCORR2, SAVG, SENT 

HV: Dual-band cross-polarization, 

horizontal transmit/vertical receive 

DENT, DISS, IDM, IMCORR1, 

IMCORR2, SAVG, SENT 

GEDI forest 

height 
Forest height 2020  

Note: DENT: Difference Entropy, DISS: Dissimilarity, IDM: Inverse Difference Moment, 

IMCORR1: Information Measure of Correlation 1, IMCORR2: Information Measure of 

Correlation 2, SAVG: Sum Average, SENT: Sum Entropy. 

 

Given the varying temporal coverage of the feature datasets, the validation of oil palm 

age data and the extraction of feature importance were stratified into three categories. Category 

1 (C1) encompassed Landsat-8, PALSAR-2 ScanSAR (ScanSAR), and Sentinel-1 SAR GRD 

(Sentinel-1) data, covering the period from 2014 to 2023. Category 2 (C2) expanded upon this 

by incorporating Planet-NICFI (Planet) data features, extending the timeframe from 2015 to 
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2023. Finally, Category 3 (C3) integrated Forest Height 2020 data into Category 2, focusing the 

temporal scope to 2020. 

In light of the well-defined growth stages observed in oil palm development (Fitrianto 

et al., 2018), we conducted a detailed validation of OPAD’s accuracy across the various growth 

stages of oil palms. These stages were delineated into five distinct categories (grouped age): 

Seed (1-2 years), Young (3-8 years), Teen (9-14 years), Mature (15-25 years), and Post-mature 

(over 25 years) (Chong et al., 2017; Fitrianto et al., 2018). Furthermore, considering the 

heterogeneity of the collected samples, we bifurcated the OPAD validation process into two 

approaches: Interpreted Sample validation, which included data from Hamsa_Tereh Selatan 

estate-MAS and Carolita_Asahan-IDN, and Field Sample validation, which involved data from 

Tan_Genting Kulai Besar Estate-MAS, Tan_MPOB Kluang-MAS, Tan_Sime Darby estate-

MAS, and Toh_Padang Lekir-MAS. Following a thorough analysis of the oil palm age database 

and feature data, we performed validation on 12 distinct age data sets and ranked the importance 

of six feature data sets. 

 

3.0 Results 

3.1 Optical remote sensing data characteristics of oil palm tree age 

The Planet satellite fleet offers high-fidelity Earth observation data that is pivotal for 

environmental monitoring, agricultural oversight, urban development, and disaster management 

applications. Figure 3 illustrates a robust correlation between the spectral bands captured by 

Planet satellites and the age of oil palms. The quartet of Planet satellite bands demonstrates 

heightened values during the seed stage of oil palm cultivation, which then taper off during the 

early stage, eventually reaching a steady state. The Near-Infrared (NIR) band, in particular, 

exhibits more pronounced oscillations, signifying the diverse developmental stages of oil palms. 

The NIR values are relatively elevated in the Seed stage, subside in the Young stage, stabilize 

through the Teen and Mature stages, and escalate once more in the Post-mature stage. This 

underscores the Planet satellite data’s critical role as a foundational resource in our 

investigation, facilitating a nuanced understanding of the interplay between the oil palm age and 

a multifaceted array of remote sensing features. 
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Figure 3. Relationship between bands of Planet imagery and oil palm age (Scale: 0.0001) 

 

Figure 4 delineates the NDVI characteristics of optical remote sensing data from various 

sources, including Landsat-5, Landsat-7, Landsat-8, Planet, and Sentinel-2, under different age 

groupings of oil palms. The NDVI is a widely recognized index in remote sensing employed to 

gauge the extent and vigour of green vegetation on Earth’s surface. As the oil palm age 

advances, there is a concomitant increase in vegetation cover and growth conditions, reflected 

in rising NDVI values (Tridawati et al., 2018). Observations from Figure 4 reveal that except 

for Landsat-5, the NDVI values for all other optical remote sensing datasets exhibit an initial 

increase during the early growth stages of oil palms, followed by stabilization. This pattern is 

attributed to the rapid growth rate of oil palms during the Seed period, which correlates with an 

expansion of vegetation cover and a swift rise in NDVI values. 
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Figure 4. The NDVI features of optical remote sensing data for oil palm tree age 

 

3.2 SAR remote sensing data characteristics of oil palm tree age 

3.2.1 Sentinel-1 SAR GRD 

By meticulously examining the bands and textural attributes of Synthetic Aperture Radar (SAR) 

data, we can deduce the distribution and developmental status of oil palm age groups. To this 

end, we have scrutinized the textural features of Sentinel-1, PALSAR-2/PALSAR (PALSAR), 
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and ScanSAR, alongside their respective bands, to capture the SAR remote sensing data’s 

representation of oil palm across various age stages. Following initial observations and a 

rigorous screening process, we have identified seven textural features for detailed discussion. 

This will serve as a foundation for subsequent data validation and analysis of feature 

importance. 

Figure 5 highlights that the Sentinel-1 VV band and its associated textures undergo 

discernible changes with the age of oil palms. Notably, the VV band parallels the trends 

observed in optical remote sensing data, with the backscattering coefficient escalating during 

the early growth stages (Seed and Young periods) and reaching a plateau as the palms mature. 

Among the textural features, SAVG, DENT, IDM, and DISS are effective indicators of the oil 

palm’s growth trajectory, particularly before age 11, exhibiting marked correlations. SAVG, in 

particular, maintains an upward trend between the ages of 11 and 16, which indicates its strong 

relationship with oil palm age. Conversely, IMCORR1 and IMCORR2 do not display as 

pronounced a relationship, and their correlation with oil palm age is less evident. 

Figure 6 presents the variation in the Sentinel-1 VH band and its textural characteristics 

to the age of oil palms. In contrast to the VV band, the VH band does not display substantial 

changes in the backscattering coefficient or its textural features across different oil palm age 

groups. However, a pattern of change is still perceptible. Despite the modest fluctuations in the 

VH band’s backscattering coefficient, subtle differences in textural values, particularly SAVG, 

DENT, IDM, and DISS, are identifiable, especially for palms younger than 11 years. Similarly, 

the IMCORR1 and IMCORR2 textural features maintain a relatively stable profile, lacking 

distinct patterns that could be linked to the age of oil palms. Consequently, it is reasonable to 

conclude that these two textural features have a limited correlation with the age of oil palms. 
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Figure 5. Relationship between Sentinel-1 VV and texture features with oil palm age 

(absolute value of VV backscattering coefficient considered during texture calculation) 
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Figure 6. Relationship between Sentinel-1 VH and texture features with oil palm age 

(absolute value of VH backscattering coefficient considered during texture calculation) 

 

3.2.2 Global PALSAR-2/PALSAR Yearly Mosaic 

The fundamental difference between PALSAR and Sentinel-1 is rooted in their respective 

operational wavelengths. Sentinel-1 functions in the C-band, characterized by medium 

wavelengths, whereas PALSAR operates in the L-band, which encompasses longer 

wavelengths. The C-band SAR is known for its enhanced spatial resolution and heightened 

sensitivity to minute alterations in the Earth’s surface microstructure and texture. This 

sensitivity, coupled with its reduced interference from vegetation, allows it to detect nuanced 
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differences in oil palm crowns, thereby enabling more accurate differentiation between oil 

palms of varying ages. On the other hand, the L-band SAR, utilized by PALSAR, boasts 

superior penetration capabilities, which can access deeper subsurface information. Considering 

the substantial root systems of oil palm trees, PALSAR remains a valuable asset in studying the 

oil palm age, offering insights that are not readily accessible through C-band SAR. 

As depicted in Figure 7, the backscattering coefficient of the PALSAR HH band exhibits 

a consistent increase with oil palm age, particularly accelerating during the Seed and Young 

periods before gradually stabilizing. Similarly, SAVG demonstrates a trend parallel to that of 

the HH band. Furthermore, DENT, IDM, and DISS all peak during the early growth stages of 

oil palm, typically around six years of age. Conversely, IMCORR1 and IMCORR2 show 

relatively minor fluctuations with oil palm age. Figure 7 illustrates that the backscattering 

coefficient of the PALSAR HH band shows a steady rise in correlation with the age of oil palms, 

with the rate of increase being most pronounced during the Seed and Young stages before it 

levels off. This pattern is mirrored by the SAVG feature, which also follows a similar trajectory. 

Additionally, the textural features DENT, IDM (Inverse Difference Moment), and DISS peak 

during the early growth stages of oil palms, typically around the age of six years. In contrast, 

IMCORR1 and IMCORR2 exhibit only marginal variations in the age of oil palms. 

Figure 8 presents the backscattering coefficient and textural features associated with the 

PALSAR HV band. Notably, the HV band of PALSAR reveals patterns analogous to those 

observed in the HH band. Specifically, IMCORR1 and IMCORR2 exhibit more distinct 

variations, echoing the DENT, IDM, and DISS trends. This suggests that the textural features 

of IMCORR1 and IMCORR2 within the PALSAR HV band are more pivotal for the study of 

oil palm age, surpassing the significance of similar features in the PALSAR HH band and the 

Sentinel-1 VV and VH bands. 
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Figure 7. Relationship between PALSAR HH and texture features with oil palm age (absolute 

value of HH backscattering coefficient considered during texture calculation) 
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Figure 8. Relationship between PALSAR HV and texture features with oil palm age (absolute 

value of HV backscattering coefficient considered during texture calculation) 

 

3.2.3 PALSAR-2 ScanSAR 

The PALSAR-2 ScanSAR mode facilitates the capture of high-fidelity radar imagery across 

extensive areas, enhancing the comprehensiveness of surface information obtained. Figures 9 

and 10 showcase the backscattering coefficients and textural features of the HH and HV bands 

operating in ScanSAR. These figures reveal that the HH and HV bands in ScanSAR display 

trends analogous to those observed with PALSAR, to a certain degree mirroring the 

developmental characteristics of oil palms across various age stages. Nonetheless, for additional 
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textural features like DENT, IDM, and DISS, the ScanSAR mode does not exhibit markedly 

distinct features, suggesting a more nuanced interpretation may be required for these specific 

textural attributes. 

 

 

Figure 9. Relationship between PALSAR-2 ScanSAR HH and texture features with oil palm 

age (absolute value of HH backscattering coefficient considered during texture calculation) 
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Figure 10. Relationship between PALSAR-2 ScanSAR HV and texture features with oil palm 

age (absolute value of HV backscattering coefficient considered during texture calculation) 

 

3.3 GEDI forest height 

A substantial body of research has established a correlation between the height and age of oil 

palm trees (Rizeei et al., 2018; Zang et al., 2023). This relationship, however, is subject to many 

influences, such as the tree’s growth environment, agricultural management practices, and 

genetic predispositions. The growth trajectory of oil palms typically progresses through distinct 

stages, with the rate and pattern of height increase potentially fluctuating at each stage. A 

positive correlation exists between the age and height of oil palm trees, suggesting that as the 
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trees age, their height increases proportionally. Nevertheless, this relationship is not strictly 

linear and may vary based on the growth stages and prevailing conditions (Chong et al., 2017). 

In our investigation, we utilized forest height data from the GEDI forest height dataset 

to examine the relationship between oil palm tree height and age. Oil palms commonly 

experience rapid growth during the Seed and Young stages, characterized by swift increases in 

height. The growth rate slows as they enter the Teen stage but remains relatively consistent. In 

the Mature and Post-mature stages, the height growth rate typically plateaus, transitioning into 

a slower growth phase. Our findings align perfectly with this growth pattern, further 

substantiating the reliability of the OPAD. 

 

 

Figure 11. The relationship between oil palm height and oil palm age 

 

4.0 Technical Validation 

4.1 Validation accuracy 

Table 4 demonstrates that the classification accuracy for oil palm age was enhanced by 

integrating Planet data sources and GEDI Height data. For the Age category, when validated 

against Interpreted Samples, the overall accuracy for C2 and C3 improved from 65.56 ± 0.34% 

to 69.04 ± 0.42% and 77.87 ± 0.70%, respectively. Moreover, the classification accuracy for 

Field Samples consistently surpassed that of Interpreted Samples, and the Grouped Age 

category generally outperformed the All Age category. Notably, the C3 achieved the highest 

validation accuracy when validated with Field Samples for the Grouped Age category, with an 

impressive overall accuracy of 86.86 ± 0.92%. Even in the All Age category, the validation 
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accuracy for the C3, using Field Samples, reached 84.70 ± 0.99%, a substantial improvement 

over the C2 under identical conditions. This enhancement is attributed to the robust correlation 

between oil palm height and age. 

 

Table 4. Validation of the accuracy of OPAD in different scenarios 

Category 

Interpreted Sample Field Sample 

All Age (%) 
Grouped Age 

(%) 

All Age 

(%) 

Grouped Age 

(%) 

C1: ScanSAR, Sentinel-1, 

Landsat-8 
65.56 ± 0.34 77.70 ± 0.31 

77.14 ± 

0.43 
83.61 ± 0.38 

C2: ScanSAR, Sentinel-1, 

Landsat-8, Planet 
69.04 ± 0.42 79.24 ± 0.29 

79.62 ± 

0.55 
84.45 ± 0.45 

C3: ScanSAR, Sentinel-1, 

Landsat-8, Planet, GEDI 

forest height 

77.87 ± 0.70 83.32 ± 1.11 
84.70 ± 

0.99 
86.86 ± 0.92 

 

 

Within the Grouped Age category, the C3, when validated against Field Samples, 

achieved the highest validation accuracy, with an overall accuracy of 86.86 ± 0.92%. Delving 

into the producer accuracy for specific oil palm age stages, the Young and Mature stages 

registered the highest accuracies, with 96.08 ± 0.92% and 96.17 ± 1.08%, respectively. 

Conversely, the Seed, Teen, and Post-mature stages exhibited lower producer accuracies, at 

88.57 ± 5.12%, 62.38 ± 1.51%, and 19.09 ± 7.96%, respectively. The post-mature stage 

recorded the lowest producer accuracy, with many oil palms incorrectly classified as mature. 

This misclassification may stem from the difficulty of differentiating fully matured post-mature 

palms from those in the mature stage. 

Furthermore, the producer accuracy for the Teen stage was also notably lower, which 

could be attributed to the rapid growth phase characteristic of this stage, influenced by various 

factors, including soil conditions, climate, and plantation management practices. This highlights 

the complexity of accurately predicting the age of oil palms during the Teen stage, as they are 

frequently misclassified as either Young or Mature. 
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Table 5. Confusion matrix generated using field samples (grouped age) 

Age group 
Seed 

(1-2) 

Young 

(3-8) 

Teen (9-

14) 

Mature 

(15-25) 

Post-mature 

(>25) 

Tot

al 
PA (%) 

Seed (1-2) 
18.6± 

1.07 

2.4± 

1.07 

0 0 0 21 88.57 ± 

5.12 

Young (3-8) 
0 49± 0.47 0.1± 

0.32 

1.9± 0.32 0 51 96.08 ± 

0.92 

Teen (9-14) 
0 0.1± 

0.32 

13.1± 

0.32 

7.8± 0.42 0 21 62.38 ± 

1.51 

Mature (15-

25) 

0 2.9± 

0.88 

0.2± 

0.42 

77.9± 0.88 0 81 96.17 ± 

1.08 

Post-mature 

(>25) 

0 0.2± 

0.42 

0 8.7± 0.67 2.1± 0.88 11 19.09 ± 

7.96 

Total 
18.6± 

1.07 

54.6± 

1.43 

13.4± 

0.52 

96.3± 0.95 2.1± 0.88 185 
 

UA (%) 
100.00  89.74 ± 

2.21 

97.76 ± 

3.45 

80.89 ± 

0.79 

100.00  
 

86.86 ± 

0.92 

 

 

4.2 The importance of feature 

Evaluating the importance of features is a pivotal step in machine learning and data analysis. 

This process is instrumental in pinpointing the features that exert the most influence on the 

prediction of the target variable. It enhances the model’s performance and mitigates the risk of 

overfitting. Moreover, feature importance assessment sheds light on the data’s critical elements, 

bolstering the model’s interpretability. In light of this, we assessed the feature importance for 

Categories 1 to 3 across both the All Age and Grouped Age scenarios. This analysis aimed to 

ascertain the relative significance of various features and remote sensing data in accurately 

predicting the oil palm age. 

Figure 12 provides a visual representation of the feature importance for Category 3 in 

both the All Age (Figure 12(a)) and Grouped Age (Figure 12(b)) contexts. The analysis reveals 

that Planet Blue, GEDI Height, and ScanSAR HH SAVG are paramount for age prediction for 

the Age scenario. In the Grouped Age scenario, the GEDI Height, ScanSAR HH SAVG, and 

Planet NIR features stand out as the most influential. However, the Grouped Age scenario 

accentuates the differences in importance, with most features contributing minimally to the age 

prediction. The importance is predominantly concentrated on a few key features, with features 

like IMCORR1, IMCORR2, and SENT showing negligible impact. 
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Figure 12. Feature importance ranking for Category 3. (a) under all age scenario; (b) under 

grouped age scenario 

 

5.0 Discussion and Conclusion 

This research effectively illustrates the utility of multisource remote sensing data in accurately 

predicting the age of oil palms. The development of the OPAD, which is updated annually, 

offers a wealth of information on the age distribution and associated vegetation traits of oil 

palms. By amalgamating optical and SAR data, we have examined various remote sensing data, 

including the NDVI, SAR data texture features, and alterations in GEDI forest height with oil 

palm age. Notably, spectral features, such as NDVI, Sentinel-1 VV, PALSAR-2 ScanSAR HH, 

and textural features, such as SAVG, DENT, IDM, and DISS, have shown trends corresponding 

to the age of oil palms. 



 

39 

 

The validation outcomes, employing a random forest classifier, underscore the 

dependability of OPAD for future analyses and its practical application in the sustainable 

management of oil palm plantations. Features such as GEDI forest height, ScanSAR HH SAVG, 

Planet NIR, and Planet Blue bands have demonstrated considerable promise in age prediction. 

These insights are instrumental in refining management practices, evaluating yield potential, 

and reducing environmental impacts within oil palm cultivation. Future studies could 

concentrate on broadening the scope of the database, improving the precision of oil palm age 

data, refining predictive models, and investigating additional factors that influence the growth 

and productivity of oil palms. 

 

Acknowledgements 

This research was supported by the National Key R&D Program of China (2019YFA0606601) 

and the Tsinghua University Initiative Scientific Research Programs (20223080017, 

2021Z11GHX002). 

 

Author Contributions 

Qiang Zhao: Writing-Original Draft, Methodology, Investigation, Formal Analysis. Le Yu: 

Conceptualization, Methodology, Validation, Supervision, Writing-Reviewing and Editing. 

Zhenrong Du: Methodology, Validation, Reviewing and Editing. Kasturi Kanniah: 

Resources, Methodology, Reviewing and Editing. 

 

References:  

Avtar, R., Ishii, R., Kobayashi, H., Fadaei, H., Suzuki, R., & Herath, S. (2013). Efficiency of 

Multi-Frequency, Multi-Polarized SAR Data to Monitor Growth Stages of Oil Palm 

Plants in Sarawak, Malaysia. In 2013 IEEE International Geoscience and Remote 

Sensing Symposium, 2137-40 Melbourne, VIC, Australia: IEEE. 

Camacho, A., Correa, C. V., & Arguello, H. (2019). An analysis of spectral variability in 

hyperspectral imagery: a case study of stressed oil palm detection in Colombia. 

International Journal of Remote Sensing, 40(19), 7603-23. 

Carolita, I., Darmawan, S., Permana, R., Dirgahayu, D., Wiratmoko, D., Kartika, T., & Arifin, 

S. (2019). Comparison of optic Landsat-8 and SAR Sentinel-1 in oil palm monitoring, 

case study: Asahan, North Sumatera, Indonesia. IOP Conference Series: Earth and 

Environmental Science, 280(1), 012015. 



 

40 

 

Chemura, A., van Duren, I., & van Leeuwen, L. M. (2015). Determination of the Age of Oil 

Palm From Crown Projection Area Detected from WorldView-2 Multispectral Remote 

Sensing Data: The Case of Ejisu-Juaben district, Ghana. ISPRS Journal of 

Photogrammetry and Remote Sensing, 100(118-27). 

Cheng, Y., Yu, L., Cracknell, A. P., & Gong, P. (2016). Oil palm mapping using Landsat and 

PALSAR: a case study in Malaysia. International Journal of Remote Sensing, 37(22), 

5431-42. 

Cheng, Y., Yu, L., Xu, Y., Liu, X., Lu, H., Cracknell, A. P., Kanniah, K., & Gong, P. (2018). 

Towards global oil palm plantation mapping using remote-sensing data. International 

Journal of Remote Sensing, 39(18), 5891-906. 

Chong, K. L., Kanniah, K. D., Pohl, C., & Tan, K. P. (2017). A review of remote sensing 

applications for oil palm studies. Geo-Spatial Information Science, 20(2), 184-200. 

Darmawan, S., Carolita, I., Hernawati, R., Dirgahayu, D., Agustan, Permadi, D. A., Sari, D. K., 

Suryadini, W., Wiratmoko, D., & Kunto, Y. (2021). The potential scattering model for 

oil palm phenology based on spaceborne X-, C-, and L-band polarimetric SAR imaging. 

Journal of Sensors, 2021(1-14). 

Fitrianto, A. C., Darmawan, A., Tokimatsu, K., Sufwandika, M., & Iop. (2018). Estimating the 

age of oil palm trees using remote sensing technique. In International Conference on 

Environmental Resources Management in Global Region. 

Hamsa, C. S., Kanniah, K. D., Muharam, F. M., Idris, N. H., Abdullah, Z., & Mohamed, L. 

(2019). Textural measures for estimating oil palm age. International Journal of Remote 

Sensing, 40(19), 7516-37. 

Li, W., Dong, R., Fu, H., & Yu, L. (2018). Large-scale oil palm tree detection from high-

resolution satellite images using two-stage convolutional neural networks. Remote 

Sensing, 11(1), 11. 

McMorrow, J. (2001). Linear Regression Modelling for the Estimation of Oil Palm Age from 

Landsat TM. International Journal of Remote Sensing, 22(12), 2243-64. 

Mohd Najib, N. E., & Kanniah, K. D. (2019). Optical and radar remote sensing data for forest 

cover mapping in Peninsular Malaysia. Singapore Journal of Tropical Geography, 40(2), 

272-90. 

Mohd Najib, N. E., Kanniah, K. D., Cracknell, A. P., & Yu, L. (2020). Synergy of active and 

passive remote sensing data for effective mapping of oil palm plantation in Malaysia. 

Forests, 11(8), 858. 



 

41 

 

Pohl, C., Kanniah, K. D., & Loong, C. K. (2016). Monitoring Oil Palm Plantations in Malaysia. 

In 2016 IEEE International Geoscience and Remote Sensing Symposium, 2556-9 

Beijing, China: IEEE. 

Rizeei, H. M., Shafri, H. Z. M., Mohamoud, M. A., Pradhan, B., & Kalantar, B. (2018). Oil 

Palm Counting and Age Estimation from WorldView-3 Imagery and LiDAR Data Using 

an Integrated OBIA Height Model and Regression Analysis. Journal of Sensors, 2018. 

Rosenqvist, A., Shimada, M., Suzuki, S., Ohgushi, F., Tadono, T., Watanabe, M., Tsuzuku, K., 

Watanabe, T., Kamijo, S., & Aoki, E. (2014). Operational performance of the ALOS 

global systematic acquisition strategy and observation plans for ALOS-2 PALSAR-2. 

Remote Sensing of Environment, 155(3-12). 

Shafri, H. Z. M., Ismail, M. H., Razi, M. K. M., Anuar, M. I., & Ahmad, A. R. (2012). 

Application of LiDAR and optical data for oil palm plantation management in Malaysia. 

In Lidar Remote Sensing for Environmental Monitoring Xiii, Edited by K. Asai, N. 

Sugimoto, U. N. Singh, A. Jayaraman, J. Huang and D. Mueller. 

Sitorus, J. (2010). Pengembangan Model Estimasi Umur Tanaman Sawit dengan Menggunakan 

Data Landsat-TM. Jurnal Penginderaan Jauh Dan Pengolahan Data Citra Digital, 1(1). 

Tan, K. P., Kanniah, K. D., & Cracknell, A. P. (2013). Use of UK-DMC 2 and ALOS PALSAR 

for Studying the Age of Oil Palm Trees in Southern Peninsular Malaysia. International 

Journal of Remote Sensing, 34(20), 7424-46. 

Tan, K. P., Kanniah, K. D., & Cracknell, A. P. (2014). On the upstream inputs into the MODIS 

primary productivity products using biometric data from oil palm plantations. 

International Journal of Remote Sensing, 35(6), 2215-46. 

Toh, C. M., Ewe, H. T., Tey, S. H., & Tay, Y. H. (2019). A Study on Oil Palm Remote Sensing 

at L-Band With Dense Medium Microwave Backscattering Model. Ieee Transactions on 

Geoscience and Remote Sensing, 57(10), 8037-47. 

Tridawati, A., & Darmawan, S. (2018) Estimation the oil palm age based on optical remote 

sensing image in Landak Regency, West Kalimantan Indonesia. IOP Conference Series: 

Earth and Environmental Science, 169(1), 012063. 

Xu, Y., Yu, L., Li, W., Ciais, P., Cheng, Y., & Gong, P. (2020). Annual oil palm plantation 

maps in Malaysia and Indonesia from 2001 to 2016. Earth System Science Data, 12(2), 

847-67. 

Zang, J., Ni, W., & Zhang, Y. (2023). Spatially-explicit mapping annual oil palm heights in 

peninsular Malaysia combining ICESat-2 and stand age data. Remote Sensing of 

Environment, 295(113693). 



 

42 

 

Zhao, Q., Yu, L., Li, X., Xu, Y., Du, Z., Kanniah, K., Li, C., Cai, W., Lin, H., & Peng, D. 

(2024). The expansion and remaining suitable areas of global oil palm plantations. Global 

Sustainability, 1-20. 


