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Abstract – Unmanned Aerial Vehicle (UAV) is one of the platforms that have recently proven profitable in agriculture, despite 

being more commonly used as a carriage platform.  Nevertheless, the use of UAVs for mapping promotes precision agriculture. 

Foliage mapping and nutrient mapping are examples of mapping techniques that are beneficial for oil palm. Assessing the 

condition and distribution of nutrient content is essential for plantation management to monitor the health of the trees, identify 

potential problems such as nutrient deficiency or pest infestation, and optimise management practices for higher yields. 

Therefore, this study aims to produce nutrient content information from UAV and spectroradiometer data. Compact remote 

sensing sensors operating at visible (RGB) (0.4-0.7 micrometre), Near Infra-red (NIR) (0.7-1.2 micrometre), thermal infrared 

(TIR) and Long-wave Infrared (LWIR) bands (7-14 micrometre) were used in this study to determine the concentration of 

foliage content in the oil palm plantation. Nutrient elements such as Nitrogen (N), Phosphorus (P), Potassium (K), Calcium 

(Ca), and Magnesium (Mg) were detected from the foliar content as indicated in the 17th frond of oil palm leaves. This study 

successfully developed a method for identifying and quantifying the nutrient content of oil palm plantations using a drone 

platform. This study would aid in predicting oil palm production and provide farm owners and managers with valuable decision-

making information.  
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1.0 Introduction 

Oil palm (Elaeis guineensis Jacq.) is one of Malaysia’s primary commodity crops, mostly planted 

for the industrial manufacture of vegetable oil due to their advantages in having suitable land 

temperature and rainfall frequency [1]. Furthermore, since oil palm is Malaysia’s primary source 

of biomass or dry matter, it needs a lot of macro and micronutrients for growth and yields. Thus, 

oil palm requires sufficient nutrients in the proper proportion to produce good and remain healthy 

over time. Although soil contains specific nutrients, it is frequently imbalanced and lacks sufficient 

nutrients to support the growth and production of oil palm [2]. 

 Conventionally, nutritional content information is gathered through soil and oil palm leaf 

analysis, which entails damaging chemical analysis methods and having an agronomist observe 

leaves, stems, and trees to diagnose nutrient deficits and illnesses. Leaf analysis more accurately 

represents oil palm tree consumption from frond 3 (F3), frond 9 (F9), and frond 17 (F17). Palm oil 

production relies heavily on the oil palm’s nutrient content, as it is through photosynthesis that the 

tree synthesizes carbohydrates and other essential compounds that contribute to the growth and 

development of the palm fruit bunches [3]. The health and density of the foliage are crucial 

indicators of the overall vitality and productivity of the oil palm plantation [8]. To help farmers 

meet their agronomic, economic, and environmental goals, it is important to have a thorough 

understanding of their crop’s nutrient needs across its life cycle. This will allow for the 

development of effective nutrient management plans [8]. 

 In recent years, conventional methods or manual monitoring in oil palm growth surveillance 

is no longer practicable because of the development of remote sensing technology such as ground-

based airborne and satellite that can be used as it saves cost, time and energy, and is capable of 

improving the likelihood of plant classification using spectral and textural analysis [7]. Effective 

plantation management and the environmental impacts of oil palm farms can be better understood 

with the help of remote sensing. In addition, green biomass, nutritional status, pigment degradation, 

and photosynthetic efficiency can all be evaluated using multispectral cameras, which gather just 

a small number of spectral bands simultaneously in the visible to near-infrared (VIS-NIR) range. 

[1,5]. Meanwhile, to assess an object’s characteristics without damaging it, a spectrometer or 

spectroradiometer measures the spectrum of light reflected off it. This spectrometer’s exceptional 

features have made it a valuable resource for researchers in many disciplines, including agriculture. 

[9,10]. 
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 In the field, UAVs are frequently employed for collecting low-altitude aerial data at large 

coverage. It is identified as a potential technology that can generate high spatial resolution imagery 

(less than 1m) at a temporal frequency that offers rapid reactions to provide crop and field status 

information. One of the main reasons why the UAV industry has surpassed market demand is that 

small UAVs are part of Low Altitude Remote Sensing (LARS), which is cheaper than traditional 

manned aircraft. [12]. Oil palm growers can benefit from data-driven techniques for early and 

accurate yield estimation and health assessment due to the ability of unmanned aerial vehicles 

(UAVs) to collect higher-resolution aerial images at a significantly lower cost compared to piloted 

aeroplanes and satellite imaging [3,6]. 

 An orthophoto can be produced by combining the NIR and RGB images. Thus, utilizing 

the orthophoto images and spectroradiometer data, the analysis of the vegetation can be conducted 

by analyzing the spectral response curve and vegetation indices such as Normalized Difference 

vegetation index (NDVI) as well as Modified Soil-adjusted Vegetation Index (MSAVI) [12]. Thus, 

a thermal infrared (TIR) image can obtain the quantitative surface temperature information through 

the different land use/land cover categories to determine the trend of nutrient contents [8]. Thus, 

this study aims to use drone-based remote sensing data and spectroradiometer measurement 

equipped to obtain information on the nutrient content of the oil palm for proper tree growth and 

development. 

 

2.0 Methodology 

2.1 Study Areas 

The study area is Bukit Kledek Estate, located approximately 2°27’45” N in latitude and 

102°30’0.7” E in longitude of Gemencheh, Negeri Sembilan. The estimated terrain elevation above 

sea level is 66 metres. Bukit Kledek Estate was planted with oil palm trees covering approximately 

865.80 ha. This study will involve about 12 acres of the experimental plot for data collection, and 

25 selected oil palm trees in the plantation will be observed using a spectroradiometer in data 

sampling. The Estate had arranged the data collection area as they are a private company, and an 

outsider needs to follow the requirements. This experimental plot indicates the undulating terrain 

was able to determine the oil palm nutrient uptake at lower and upper ground levels. The location 

of the study area and terrain pattern are shown in Figure 1 and Figure 2 below. 
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Figure 1. Location of the study area 

 

 

Figure 2. Digital Terrain Model and 3D Mesh of study area 

 

2.2 Data Acquisition 

This study’s data acquisition process comprises RGB, NIR, and TRI sensors. The images were 

acquired through fieldwork conducted with a DJI Phantom 4 drone equipped with a MAPIR Survey 

2 NIR and RGB sensor for RGB and NIR data acquisition. Phantom 4 will be attached for thermal 

images with DJI Zenmuse XT (Table 2). In collecting the spectroradiometer data, the oil palm 
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tree’s branches (Figure 3) need to be cut for spectral observation (Figure 4) and to produce the 

spectral response graph. The 17th fronds of the palm tree were chosen for spectroradiometer 

observation in this study to indicate oil palm growth trends [15]. 

 

 
Figure 3. 25 samples of oil palm leaves 

 
Figure 4. Spectroradiometer observation 

 

 Therefore, 25 different oil palm tree branches randomly representing the lower stream and 

upper stream were used in this study area. Subsequently, GPS observation is also carried out in 

selected areas to obtain the Ground Control Point (GCP) with coordinate references using Topcon 

GR-5. The Real-Time Kinematic (RTK) method acquired field data to establish ground control 

points (GCP). A total of 12 GCPs and 25 points for a sample has been collected. Table 1 shows the 

coordinates of the GCPs point. 

 

Table 1. Coordinate of the GCPs 
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Table 2. The instruments used in this study 

Instrument Specifications 

(a) 

 

 

 

DJI 

Phantom 4 Drone 

 

Payload: 1.38 kg 

Flight Autonomous: 28 minutes 

Velocity Range: 2 m above ground 

Altitude Range: 0 - 10 m 

Operating Range: 0 - 10 m 

Obstacle Sensory Range: 0.7 - 15 m 

(b) 

Survey3W MAPIR Camera - 

Visible Light RGB & Near 

Infrared (NIR) 

 

 

Focal length: 35 mm 

Sensor: 20 megapixels 

FOV: 60 (horizontal) 

Capture Speed: 

RAW+JPG: 3 Seconds / Photo. JPG: 2 Seconds / 

Photo 

(c) 

 

 

 

DJI Zenmuse 

XT Thermal 

Camera 

 

 

Lens: 13 mm  

Resolution: 640 × 512 pixels 

Spatial Resolution: 0.4 cm 

Spectral Range: 7.5 – 13.5 micrometre 

Thermal Imager: Uncooled VOx Microbolometer 

(d) 

   
Spectral Evolution RS-3500 

Series Field Portable 

Spectroradiometer 

 

 

Spectral Range: 350 – 2500nm 

Spectral Resolution 3nm @700nm, 8nm @1500nm, 

 6nm @2100nm 

Wavelength Accuracy: ~0.5 bandwidth 

Batteries: External Li-ion battery and universal power 

charger  

Weight: 7.3 lbs (spectroradiometer only) 
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e) 

 

GPS 

Topcon Tripod 

 

Signals Tracked GPS, GLONASS, QZSS, SBAS, 

Galileo* and Beidou (BDS)* 

Number of Channels 226-Channel Vanguard 

Technology™ with Universal Tracking Channels 

Accuracy: 

RTK H: 10mm + 1.0ppm 

V: 15mm + 1.0ppm 

Static H: 3mm + 0.5ppm 

V: 5mm + 0.5ppm 

 

 

2.3 Data Pre-Processing 

In the data pre-processing stage, several processes need to be performed: image stitching, layer 

stacking, orthophoto, geometric correction, and radiometric correction, which involves converting 

to reflectance, topography DSM/DTM, and thermal image. At the same time, conversion to 

reflectance is carried out based on linear correlation orthophoto and spectroradiometer data. The 

raw data from RGB, NIR, and IRT sensors will go through stitching, in which the images from 

each sensor are combined into a single, unified image format known as an orthophoto. Figure 5 

shows the orthophoto of RGB, NIR and IRT successfully produced through image processing 

systems such as Pix4D Mapper Software and Agisoft. 

 All orthophotos must be geometrically corrected to correct geometric distortions from a 

distorted image and transform the data to real-world coordinates on the Earth’s surface. Next, to 

ensure that the data accurately represents the reflected or emitted radiation detected by the sensor, 

radiometric correction must be conducted to adjust the data for abnormalities in the sensor and 

undesirable sensor or ambient noise. Other than that, the Digital Terrain Model (DTM) or Digital 

Surface Model (DSM) is produced during processing step 3, DSM, Orthomosaic and Index. Once 

the Raster DSM is generated, the tiles of the Raster DSM are merged. 
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(a)                                                (b)                                                   (c) 

Figure 5. The result of the ortho mosaic of (a) RGB, (b) NIR and (c) thermal image 

 

2.4 Data Processing 

Data processing is a stage that has been done to obtain the final output of this research and the 

analysis. In this stage, the spectral reflectance of oil palm trees was used to generate the reflectance 

graph for UAV and spectroradiometer. The primary data, the orthophoto image, will be processed 

using GIS and remote sensing software such as ArcGIS and QGIS. Furthermore, this study used 

the NIR and red spectrums to estimate Normalized Different Vegetation Index (NDVI) Modified 

Soil Adjusted Vegetation Index (MSAVI) maps. These maps were produced to analyze the oil palm 

trees in the study area. Then, the NDVI and MSAVI process is performed by using the Raster 

Calculator tool in ArcGIS ArcMap 10.3 software. Below are the equations [8] to determine NDVI 

and MSAVI values. 

 

 NDVI =  (NIR – RED) / (NIR + RED) 

 MSAVI =  (1+L) * (NIR –RED) / (NIR + RED + L)       (equation 1) 

 

However, the difference between SAVI and MSAVI comes in how L is calculated. MSAVI 

uses the following formula to calculate L: 

 

 L =  2 * s * (NIR - Red) * (NIR-s* Red) / (NIR + Red)      (equation 2) 
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where s is the slope of the soil line from a plot of red versus near-infrared brightness values. 

 

For foliage modelling, the main elements of nutrients involved are Nitrogen (N), 

Phosphorus (P), Potassium (K), Calcium (Ca) and Magnesium (Mg). The regression models 

indicate that nutrients and reflectance have a positive relationship, and the amount of nutrients can 

be estimated using the reflectance values at various bands. By using the reflectance data and foliar 

analysis data, regression analyses using the models by [8] (see equation 3) were performed to show 

the relationship between the nutrient element and the bands. 

 

N =  2.405b0 – 18.042b1 + 12.995b2 + 6.299b3 – 0.0507b4 

P =  0.161b0 – 1.219b1 + 0.07971b2 + 1.06b3 + 0.003676b4 

K =  1.277b0 + 25.557b1 + 6.351b2 – 30.531b3 – 0.581b4 

Ca =  0.654b0 – 13.924b1 + 5.75b2 + 4.635b3 + 0.09429b4 

Mg =  0.138b0 + 1.579b1 – 0.354b2 + 2.524b3 – 0.171b4       (equation 3) 

 

Where; 

 b = Band  X = Reflectance 

 b1 = Band 1   N = % concentration of nitrogen 

 b2 = Band 2   P = % concentration of phosphorus 

 b3 = Band 3   K = % concentration of potassium 

 b4 = Band 4   Ca = % concentration of calcium 

 Mg = % concentration of magnesium 

 

3.0 Results and Discussions 

3.1 Spectral Reflectance Curve Graph 

The spectral reflectance curves for all 25 samples of frond 17 obtained from the spectroradiometer 

are shown in Figure 6 (a-y). In general, most samples show similar spectral reflectance curves 

where nearly all of the samples chosen are in healthy condition. Thus, the graph showed the highest 

reflectance in the near-infrared band, approximately from 0.753 – 0.900 µm wavelengths. 
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(a) Sample 1 

 
(b) Sample 2 

 

(c) Sample 3 

 

(d) Sample 4 
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(e) Sample 5 

 

(f) Sample 6 

 

(g) Sample 7 

 

(h) Sample 8 
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(i) Sample 9 

 

(j) Sample 10 

 

(k) Sample 11 

 

(l) Sample 12 
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(m) Sample 13 

 

(n) Sample 14 

 

(o) Sample 15 

 

(p) Sample 16 
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(q) Sample 17 

 

(r) Sample 18 

 

(s) Sample 19 

 

(t) Sample 20 
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(u) Sample 21 

 

(v) Sample 22 

 

(w) Sample 23 

 

(x) Sample 24 
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(y) Sample 25 

Figure 6. The spectral reflectance curve for 25 samples (6a – 6y) (L – Line, P – Point) 

 

3.2 Vegetation Index 

3.2.1 Normalized Difference Vegetation Index (NDVI) 

Figure 7 presents an NDVI map as a series of colours corresponding to specific ranges of values. 

Red indicates bare soil or dead/sparse vegetation, and all shades of green indicate normal to dense 

vegetation cover. When the NDVI value is high, it shows it is healthier vegetation. Furthermore, 

NDVI values less than 0.1 denote barren rock, sand, or snow areas. Moderate levels (0.2 to 0.3) 

reflect shrub and grassland, whereas high values (0.6 to 0.8) represent temperate and tropical 

rainforests. Most of the examined region has a greener tint, indicating a high reflection of NIR 

light. As a result, nearly all the oil palm trees in the research region are in excellent and healthy 

condition. 
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Figure 7. NDVI map of the study area 

 

3.2.2 Modified Soil-adjusted Vegetation Index (MSAVI) 

The Modified Soil Adjusted Vegetation Index (MSAVI) was developed to overcome limitations in 

applying NDVI to areas with a significant proportion of bare soil. MSAVI is utilized where indices 

such as NDVI produce inaccurate data, usually due to a lack of vegetation or chlorophyll. 

Moreover, MSAVI reduces the influence of bare soil on the SAVI (Soil Adjusted Vegetation 

Index). MSAVI is derived as a ratio of R and NIR values using an inductive L function to minimize 

soil impacts on the vegetation signal. Based on Figure 8, it is plain to observe that bare soil in the 

area of oil palm in Bukit Kledek represents a very high dispersion of greener colour. Furthermore, 

the near-zero value represents the bare soil area (non-vegetation). Meanwhile, the below zero 

(negative) value represents the low vegetation covered. 
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Figure 8. MSAVI map of the study area 

 

3.3 Foliage Modelling 

The result of the primary elements nutrients, which are Magnesium (Mg), Nitrogen (N), 

Phosphorus (P), Potassium (K), and Calcium (Ca), were calculated using orthophoto images based 

on regression analyses equation stated in Figure 9 until figure 13. 
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Figure 9. Magnesium map 

 

 



 

164 

 

Figure 10. Nitrogen map 
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Figure 11. Phosphorus map 
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Figure 12. Potassium map 
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Figure 12. Calcium map 

 

 From the results, each element represents differences in values and slightly similar 

distribution patterns as seen in the maps. The differences may relate to external and internal factors, 

which cause bias, such as condition and sensor installation. Based on the result, we can notice that 

K concentration is relatively high in the research area since it shows a very high dispersion of 

greener colour than other nutrient elements. The photosynthetic activity of plants and their 
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chlorophyll molecules relies heavily on the mineral potassium. If there is enough potassium in the 

soil, it could protect crops from disease and drought. Due to the high concentration of leaf K in the 

research location, palms cannot absorb the low Mg concentration [8]. The age of the crop 

influences the concentration of N. Hence, the oil palms in the research region planted more than 

12 years ago had an optimum concentration of leaf N, and the N deficit is unusual in mature palms 

[14]. The N deficiency in the research area is mainly caused by nitrogen loss through erosion, 

particularly on hilly terrain. Phosphorus is essential for crop growth and fruit quality. High levels 

of Al and Ca are the primary factors reducing P adsorption by palms in the studied area. 

Furthermore, soil pH and Mg content can alter Ca concentration in the leaf. 

 

3.4 Quantitative Analysis 

Random samples have been acquired for quantitative analysis, as shown in Figure 13 (without 

grid). The study will classify these samples into two groups: dependent and independent. T-test 

statistical analysis has been carried out, as shown in Table 3.  

 

 

Figure 13. Distribution of dependent and independent sample points 
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Table 3. Dependent vs. independent samples 

T-Test of Nitrogen 

 

T-Test of Phosphorus 

 

T-Test of Potassium 

 

T-Test of Calcium 
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T-Test of Magnesium 

 

 

Hypothesis: 

H0: Dependent = Independent / ρ = 0 

H1: Dependent ≠ Independent / ρ ≠ 0 

 

From Table 3, a two-tailed paired samples T-test revealed that all the dependent samples 

are higher than independent samples in the vegetation with t (24) = p ≤ 0.05. The p-value (0.000) 

is less than 0.05, it proves to reject the null hypothesis (H0) and H1 is accepted, where their 

sufficient evidence to conclude that the correlation is not equal to 0 and it is highly significant. It 

is shown that there is a significant linear relationship between dependent samples and independent 

samples as the population correlation coefficient of the nutrient is a positive correlation. As a result, 

dependent and independent samples of the five main elements nutrient involved in this study which 

is Nitrogen (N), Phosphorus (P), Potassium (K), Calcium (Ca), and Magnesium (Mg) can be 

simplified as in the Table 4. 

 

Table 4. Statistical analysis results for nutrient elements 

Parameter RMSE 

Nitrogen (N) 13.907 

Phosphorus (P) 0.51 

Potassium (K) 9.523 

Calcium (Ca) 4.17 

Magnesium (Mg) 3.499 
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 The statistical analysis results in Table 4 show that the RMSE value, correlation of 

determination analysis, and R-square (r2) give significant test results for all the nutrient elements, 

respectively. Based on the RMSE result, Phosphorus (P) has a better value than other parameters 

because an RMSE of 0.7 is small for a datum range of 0 to 1000 but not so small when the range 

is reduced to 0 to 1. Lower RMSE values, on the other hand, indicate better fit. The r2 results show 

the positive linear to all elements. However, Magnesium (Mg) indicates a small positive linear 

association with a result of 0.499 compared to others, which indicates a large positive linear 

association. Furthermore, the t-test analysis at 95% confidence interval and degrees of freedom of 

24 show that the parameters showed beyond the critical value of T at ±2.060 (based on the student 

t distribution table) and rejected the null hypothesis due to very low p-values where it is shown that 

each nutrient parameter is not the same. The statistical analysis above indicates that each parameter 

has a strong correlation and is powerfully relevant to the produced trend model of nutrient elements 

in this study using a drone-based remote sensing technique. 

 

3.5 Qualitative Analysis 

Three parameters have been analyzed qualitatively, as shown in Figure 14. 

 

Potassium (K) Thermal DTM 

 

 

 

 

 

 

Figure 14. Potassium, thermal and DTM image for one sample 

 

 According to a previous study that focused on the relationship between elevation and 

temperature, temperature tended to decrease with increasing elevation. Each plant type has 

different minimum, optimum and maximum temperature limits for each level of growth [11]. 

Temperatures below minimum or above the maximum will inhibit plant growth and development. 
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However, there is a consistent decreasing trend in near-surface temperature with increasing 

elevation, which acts on the surface heating processes via the heat exchange process between the 

surface and the air [13]. 

 From the foliage analysis result, the potassium is high in the study area since it shows a 

very high dispersion of greener colour than other nutrient elements. This is because potassium 

plays an important role in converting light into biochemical energy during photosynthesis. 

Potassium application increased the leaf area of oil palms. Leaf area is related to how much sunlight 

the leaves in photosynthesis can capture. The optimum leaf area would increase the assimilate 

formed so that it would affect the yield of oil palm. 

 Since photosynthesis is a chemical reaction, and the rate of most chemical reactions 

increases with temperature, it is also relevant to the rate of photosynthesis, where higher 

temperatures typically result in a greater rate of photosynthesis. In tropical climates, literature on 

subsurface soil temperature indicates temperatures can range from 15 to 25 °C below ground [16]. 

Tropical climates are characterized by year-round monthly average temperatures of at least 18 °C 

(64.4 °F) and sweltering. Typically, the annual temperature range in tropical climates is relatively 

modest. In addition, there is a strong correlation between elevation and temperature, with a lapse 

rate of approximately 6 °C per 1000 m, and elevation is frequently associated with slope inclination 

in tropical regions [17]. 

 

4.0 Conclusion 

The study shows that nutrient content can be detected using the remote sensing technique. The 

ability of remotely sensed data to quantitatively detect and estimate the nutrient concentration in 

the soil would enhance yield predictions and provide farm managers with valuable information for 

making day-to-day management decisions. A spectroradiometer could be used to validate the 

spectral reflectance from multispectral images if the reflectance of the images exhibits the same 

trend as the spectroradiometer’s reflectance. Hence, this study promotes a transformation from the 

traditional, time-consuming and expensive method of soil analysis to this new technique of data 

analysis. Compared to foliar research conducted in oil palm plantations using block samples, the 

nutrient mapping developed in this study is substantially superior in capturing and displaying the 

spatial variability of nutrient concentration. Moreover, using regression analysis, the relationship 

between the dependent and independent variables is examined to determine the optimal range of 
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EMR, which is the most sensitive to nutrients, and the results indicate that each parameter has a 

strong correlation. In conclusion, deploying UAVs with multispectral cameras will enable the 

building of trend models for nutrient elements using remote sensing techniques. 
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