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Abstract – Having detailed information and inventories about landslides is important for studying landslides. These inventories 

have been created for various purposes. However, detecting and mapping landslides in highly dense vegetated areas and 

evaluating their activity state is a major challenge due to various factors, such as the dense tree canopy, undulating terrain, and 

fast-growing vegetation. Therefore, this paper presents a new technique for categorising landslide activity using vegetation 

anomalies indicators (VAIs) extracted from high-resolution remote sensing data. The data were utilised to support manual 

landslide inventory and VAI production. The landslide inventory map was divided randomly into two groups of datasets, one 

for training (70%) and the other for validation (30%). The classification process used a boosting ensemble learning approach, 

specifically Decision Tree (DT) and Stochastic Gradient Boosting (SGB), with seven primary VAIs as inputs. The study 

compared the classification models’ performance against various parameters, including spatial resolution and landslide depth. 

To evaluate the accuracy of the classification methods, metrics such as overall accuracy, kappa, producer’s accuracy, and user’s 

accuracy were measured from the validation dataset. The results demonstrated that both methods performed best under high 

spatial resolution. Among the two approaches, DT performed better, with an overall accuracy value of 89.6% for deep-seated 

translational, 64.0% for shallow translational, 67.0% for deep-seated rotational, and 80.0% for shallow rotational. This reliable 

accuracy that has been attained in landslide activity classification from VAI allows (i) to map and classify the landslide activity 

in the forested area, (ii) characterise the different types of vegetation characteristics to specific landslide activity, and (iii) 

permits for the continuous landslide activity monitoring in the area where monitoring activity is not practically feasible to be 

conducted. 
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1. Introduction 

Landslides severely threaten human life in various parts of the world (Schuster, 1996, 

GEOHAZARDS, 2004). They impact civilians, the environment, properties, and infrastructure 

(Gaidzik et al., 2017, Kaur et al., 2017, Mia et al., 2015, Schuster and Highland, 2003). Landslides 

are defined as mass movements on natural or man-made slopes involving the shifting of slope-

forming materials such as soil and rock by falling, toppling, sliding, spreading, or flowing (Cruden, 

1991, Gariano and Guzzetti, 2016). The Centre for Research on the Epidemiology of Disasters 

(CRED) database recorded over 9,000 landslide-related deaths from 2006 to 2015, with Asia 

accounting for 77.4% of fatalities (Sanderson & Sharma, 2016). 

Having comprehensive records of landslides and associated information is vital for 

landslide research. The creation of landslide inventory maps serves several purposes (Brabb, 1991), 

such as (i) documenting landslide activity in various areas, from small to a large area (Cardinali et 

al., 2001), (ii) documenting landslide occurrences at regional, state, and national levels (Brabb and 

Pampeyan, 1972, Cardinali et al., 1990, Duman et al., 2005), and as a precursor to producing 

landslide susceptibility, hazard, and risk assessments (Dias et al., 2021, Hung et al., 2017, Van 

Westen et al., 2006). Furthermore, inventory maps aid in analysing landslide distribution, types, 

and patterns related to drainage, morphological, and vegetation characteristics (Guzzetti et al., 

1996, Soeters and Westen, 1996). In the past, landslide inventory mapping involved fieldwork in 

which an interpreter could recognise landslide types and activity based on various diagnostic 

features. However, this approach is not always economically or practically feasible, particularly at 

the regional scale, where time-consuming and resource-intensive procedures are required 

(Getachew and Meten, 2021, Kocaman et al., 2020, Pawłuszek et al., 2017, Yang et al. 2017, 

Behling et al., 2014, Cigna et al., 2013, Santangelo et al., 2010, Haneberg et al., 2009, Guzzetti et 

al., 1999). Additionally, old landslides, total or partial vegetation coverage, and features dismantled 

by other landslides or human actions can make it challenging to observe all of a landslide (Guzzetti 

et al., 2012). 

Using remote sensing data alongside conventional investigations can effectively support 

landslide mapping due to its comprehensive area coverage, non-invasive nature, and cost-

effectiveness (Moosavi et al., 2014, Golovko et al., 2015, Bozzano et al., 2017). Aerial photographs 

are commonly used to recognise landslides and cover a wide area (Otukei and Blaschke, 2010, 

Guzzetti et al., 2012, Chen et al., 2013, Li et al., 2016). However, this technique requires 
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experience, training, and a well-defined landslide interpretation standard (Antonini et al., 2002, 

Galli et al., 2008, Jackson Jr et al., 2012). Furthermore, it may produce errors, particularly in forest 

areas where vegetation can conceal underlying soils and rocks (Marchesini et al., 2013, Santangelo 

et al., 2015), especially for forest areas (Brardinoni et al., 2003, Mezaal et al., 2017, Pirasteh and 

Li, 2016), since the reflectance spectra of vegetation conceal the spectra of underlying soils and 

rocks, the most critical barrier to geological identification and mapping (McKean and Roering, 

2004, Hede et al., 2015). In addition, using monoscopic and stereoscopic images from aerial 

photographs might produce a digital terrain model (DTM) with low accuracy since the ground 

surface is not well presented in photogrammetric DTMs of forested terrain, leading to incomplete 

and unreliable landslide inventories. For this reason, using vegetation information to indicate 

landslide activity is a natural and inexpensive approach, especially in tropical regions where 

vegetation can stabilise slopes through root binding. 

The stability of a slope may be improved by vegetation, as plant roots bind the soil and 

reinforce its layers. Researchers have used various Vegetation Anomalies Indices (VAIs), such as 

tree height irregularities (Razak et al., 2013a, Razak et al., 2013b), leaning trunks (Wang et al., 

2016a, Wang et al., 2016b, Zhang et al., 2016), and tree-rings (Łuszczyńska et al., 2017, Wistuba 

et al., 2013), to investigate the relationship between vegetation characteristics and landslide 

occurrences. However, there has been limited research in tropical regions. This is because many 

tropical areas are inaccessible or difficult to reach, making it challenging to collect data on landslide 

activity and vegetation indicators (Yan et al., 2023). Also, the factors include a lack of 

transportation infrastructure or restricted access to protected areas. Besides that, vegetation patterns 

in tropical regions can be highly variable and complex, which can make it difficult to identify clear 

indicators of landslide activity (Brardinoni et al., 2003, McKean and Roering, 2004, Korup, 2005, 

Cigna et al., 2013, Tien Bui et al., 2018). This variability can be due to soil type, topography, and 

climate. Therefore, this study uses high-resolution, remotely sensed data, such as satellite images 

and airborne LiDAR, to derive various VAIs and examine their relationship with landslide activity. 

The goal is to explore the possibility of using VAIs to automatically detect landslides, which could 

help guide in-situ landslide activity monitoring and reduce the need for labour-intensive manual 

image interpretation in large landslide zones in tropical areas. 
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2. Study Area 

Kundasang is a region in the northwest of Ranau, Sabah, Malaysia, with a hilly and unstable 

landscape caused by historical tectonic activity (Figure 1). The study area encompasses 70.47 km2 

and ranges from 500 to 2000 meters above sea level. The climate is tropical and humid, with 

temperatures between 25 °C and 35 °C in lowlands and two monsoon seasons from May to October 

(dry) and November to April (wet). Kundasang is in the “ever-wet zone” and receives at least 60 

mm of rainfall per month, with an annual rainfall average of 2075 mm (ranging from 1920 mm to 

3190 mm). This location was chosen for the study due to its tropical setting and high incidence of 

landslides from natural and human causes (Tating, 2006). 

 

 

Figure 1. Location of the study area 
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3. Materials and Methods 

The study is divided into multiple phases. The initial stage involves obtaining high-resolution 

remotely sensed data, field data, and ancillary data. The point cloud data (Figure 2) originated from 

a RIEGL LMS-Q680i airborne laser scanner in 2015, a laser scanner that can detect over long 

distances and analyse full waveforms as acquired from the Department of Mineral and Geosciences 

Malaysia (JMG). This scanner can acquire scan data with a precision of 20mm and has a range of 

3000m, allowing for measurement of up to 266,000 pulses per second on the ground. As a result, 

the point cloud data is of very high density, with an average of 160 points per square meter (m2) in 

the study area. To differentiate between ground and non-ground points, the airborne LiDAR data 

was processed using the Triangular Irregular Network (TIN) densification method suggested by 

Axelsson (1999). Airborne LiDAR point clouds are filtered and interpolated to create a Digital 

Terrain Model (DTM), while a Digital Surface Model (DSM) is produced by interpolating non-

ground points. Field data is also collected during this stage, which includes observing landslide 

inventory and vegetation characteristics. 

The second stage focuses on developing a landslide inventory by manually interpreting the 

high-resolution, remotely sensed data. The landslide inventory was created through remote sensing 

data interpretation and field observations. The remote sensing component of the inventory relied 

on several airborne LiDAR-derived datasets: topographic openness, hillshade, and colour 

composite. These datasets were created using a DTM and orthophoto with a spatial resolution of 7 

cm. Topographic openness was used to identify the contrast between the flat and downward slopes 

and was detected by examining a colour ramp. Other landslide features, such as hummocky 

surfaces, steep slopes, thick toes, and step-like morphologies, could be recognised using the 

hillshade 3D features. The orthophoto image displayed evidence of landslide occurrence through 

polygons or other indicators such as road cracks, soil erosion, and ponding or back-tilting areas. 

The third stage concentrates on developing VAIs using high-resolution remote sensing data. 

The VAIs consisted of 15 raster maps that can be grouped into seven groups: 1) tree height 

irregularities; 2) canopy gap; 3) density of different layers of vegetation; 4) vegetation type; 5) 

vegetation indices; 6) root strength index (RSI); and 7) distribution of water-loving trees. During 

the fifth stage, VAI maps and landslide inventory maps were combined and analysed to classify 

landslide activity. A boosting ensemble learning approach was used, as shown in the following 

pseudocode (see Table 1), to classify different types and depths of landslides, such as deep-seated 
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translation, shallow translational, deep-seated rotational, and shallow rotational. The Boosting 

technique was introduced as an online learning algorithm called Adaboost in 1997 by Freund and 

Schapire (1997). It involves creating a model from the training data and then developing a second 

model that aims to correct the errors of the first model. This process is repeated until the training 

data is perfectly predicted or until a maximum number of models is reached. The method constructs 

a linear combination of base learners focusing on challenging examples. Boosting has 

demonstrated significant success in supervised learning, and a weighted voting approach is utilised 

to generate the final strong learner. 

The pseudocode for the Boosting algorithm is presented in Table 1. The Boosting algorithm 

requires three inputs: the training dataset D, a base learning algorithm L, and the number of learning 

rounds, T. The algorithm starts by initialising the weight distribution D1. Then, for each round t = 

1 to T, the algorithm trains a base learner hT using a weighted version of the training data DT. The 

error of the base learner is calculated as εt, and the weight of the base learner is determined as αt. 

The normalisation factor Zt is then computed to make the distribution Dt+1. Finally, the distribution 

for the next round, 𝐷𝑡+1(𝑖), is updated based on the weights and errors of the current base learner. 

This process is repeated for T rounds. This Boosting algorithm outputs a weighted combination of 

the T base learners, where the weight of each base learner is given by αt. The final prediction is 

made by taking the sign of the sum of the weighted predictions. 

The resulting classified landslide activity map was then assessed using the validation 

dataset from the landslide inventory. Various accuracy statistics, such as overall accuracy (OA), 

kappa coefficient (κ), producer’s accuracy (PA), and user’s accuracy (UA), were constructed using 

an error matrix (Foody, 2020, Maxwell et al., 2021). OA indicates the percentage of samples that 

were correctly classified. κ is a powerful and commonly used multivariate accuracy assessment 

technique that evaluates the overall statistical agreement of a confusion matrix, thereby assessing 

classification accuracy more rigorously. PA measures the inaccuracy that arises due to an omission 

(omission error) and shows the likelihood of an actual class being correctly categorised. 

Conversely, UA is a measure of commission error that indicates the probability of a segment 

classified as predicted data representing the specific activity. 
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Figure 2. Visualisation of airborne LiDAR point cloud over part of the study area 

Table 1. Pseudocode of boosting algorithm 

Algorithm: Boosting 

1  Input: 

2     Dataset D = [(x1,y1),(x2,y2),…,(xM,yM)]; 

3     Base learning algorithm L; 

4     Number of learning rounds, T. 

5  Process: 

6       𝐷1(𝑖) =  
1

𝑀
; # Initialise the weight distribution 

7       For t = 1,2,…,T: 

8       hT = L(D,DT); #Train a base learner ht from D using Dt 

9       𝜀𝑡 = ∑ 𝐷𝑡(𝑖)[ℎ𝑡(𝑥𝑖) ≠  𝑦1];   𝑀
𝑖=1 #Measure the error of ht 

10     𝛼𝑡 =  
1

2
ln

1−𝜀𝑡

𝜀𝑡
;    #Determine the weight of ht 

11     𝑍𝑡 =  ∑ 𝐷𝑡(𝑖)𝑥 {
𝑒−𝛼𝑡 𝑖𝑓 ℎ𝑡(𝑥𝑖) =  𝑦𝑖

𝑒𝛼𝑡  𝑖𝑓 ℎ𝑡(𝑥𝑖)  ≠  𝑦𝑖   
𝑚
𝑖=1    ; #𝑍𝑡 is a normalisation factor that 

enables Dt+1 to be a        distribution  

12      𝐷𝑡+1(𝑖) =  
𝐷𝑡(𝑖)

𝑍𝑡
𝑥 {

𝑒−𝛼𝑡 𝑖𝑓 ℎ𝑡(𝑥𝑖) =  𝑦𝑖

𝑒𝛼𝑡 𝑖𝑓 ℎ𝑡(𝑥𝑖)  ≠  𝑦𝑖  
    ; #Update the distribution 

13      end 

14  Output: 

15       𝐻(𝑥) = 𝑠𝑖𝑔𝑛 ∑ 𝑎𝑡ℎ𝑡(𝑥)𝑇
𝑡−1  

 

4. Results and Discussion 

The performance of landslide activity classification for deep-seated translational, shallow 

translational, deep-seated rotational, and shallow rotational landslides using boosting technique is 

presented in Figure 3 and Tables 2–5. The classification using boosting techniques (DT and SGB) 

achieved satisfactory accuracy for deep-seated translational landslides. The OA varied from 65.9% 
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to 89.6% and 65.9% to 81.8% for DT and SGB, respectively. Meanwhile,  values ranged from 

0.449–0.830 for the DT technique and 0.412–0.698 for SGB. Table 2 shows that DT consistently 

reported the best OA for almost all spatial resolution categories except 5 m. with 89.6%, 84.2%, 

80.8%, 78.3%, and 63.9% for 0.5 m, 1 m, 5 m, 10 m, and 20 m resolution categories, respectively. 

Moreover,  value also shows that DT has achieved a significant increase in classification accuracy 

with recorded  values of 0.830 (0.5 m), 0.742 (1 m), 0.688 (5 m), 0.647 (10 m), and 0.449 (20 m). 

The increase of 23.7% of OA from 65.9% (20 m) to 89.6% (0.5 m) for DT and 15.9% for SGB 

indicated that the higher the spatial resolution, the more stable the OA result. 

 

 

 

Figure 3. Graphs of OA and  using the DT and SGB methods 
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Table 2. Accuracy assessment of classified activities of deep-seated translational landslide using 

the boosting technique 

Deep-seated, Translational 

Resolution Assessment 
DT SGB 

Active Dormant Relict Active Dormant Relict 

0.5-meter 

PA (%) 82.4 90.3 99.2 69.8 87.1 82.5 

UA (%) 84.0 89.8 97.7 81.8 79.0 87.3 

OA (%) 89.6 81.2 

 0.830 0.684 

1-meter 

PA (%) 86.0 83.1 84.4 78.7 84.9 77.9 

UA (%) 83.3 87.1 78.1 83.0 81.5 81.0 

OA (%) 84.2 81.8 

 0.742 0.698 

5-meter 

PA (%) 82.0 79.8 81.9 74.4 87.1 78.3 

UA (%) 78.3 83.5 77.9 85.8 80.0 81.8 

OA (%) 80.8 81.8 

 0.688 0.695 

10-meter 

PA (%) 62.3 86.3 84.9 69.8 72.5 69.7 

UA (%) 91.7 73.4 77.8 72.6 69.9 71.9 

OA (%) 78.3 71.1 

 0.647 0.536 

20-meter 

PA (%) 63.6 62.5 77.8 36.4 75.0 77.8 

UA (%) 50.0 71.4 77.8 66.7 66.7 63.6 

OA (%) 65.9 65.9 

 0.449 0.412 
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Figure 4. Examples of the classified activities of deep-seated translational landslides with different 

spatial resolutions using the DT and SGB methods 
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As shown in Table 3, in the case of shallow translational landslides, the classification of activity 

using boosting techniques is typically lower than in deep-seated translational landslides. The OA 

ranged from 54.8% to 64.0% and 52.1% to 63.9% for DT and SGB, respectively. Meanwhile,  

values ranged from 0.324 to 0.450 for the DT technique and 0.273 to 0.451 for SGB. Similar to the 

deep-seated translational, DT consistently reported the best OA for almost all spatial resolution 

categories with 63.4%, 64.0%, 59.3%, 56.2%, and 54.8% for 0.5 m, 1 m, 5 m, 10 m, and 20 m 

resolution categories, respectively. Moreover, the  value also shows that DT has achieved a good 

classification accuracy with values of 0.442 (0.5 m), 0.450 (1 m), 0.380 (5 m), 0.338 (10 m), and 

0.324 (20 m). The increase of 9.2% of OA from 54.8% (20 m) to 64.0% (1 m) for DT and 11.8% 

for SGB indicates that the higher the spatial resolution, the more stable the OA result. Both methods 

recorded the lowest OA values under the 20 m dataset spatial resolution category (DT = 54.8%, 

SGB = 52.1%). This is because the coarse resolution of the dataset tends to generalise the pixel 

value in the landslide location. 
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Table 3. Accuracy assessment of classified activities of shallow translational landslide using the 

boosting technique 

Shallow, Translational 

Resolution Assessment 
DT SGB 

Active Dormant Relict Active Dormant Relict 

0.5-meter 

PA (%) 48.1 68.2 70.4. 51.5 65.8 69.5 

UA (%) 67.3 60.6 64.4 64.0 61.9 64.1 

OA (%) 63.4 63.2 

 0.442 0.440 

1-meter 

PA (%) 47.8 68.9 71.5 52.1 65.5 71.4 

UA (%) 68.3 61.8 64.3 64.3 63.1 64.5 

OA (%) 64.0 63.9 

 0.450 0.451 

5-meter 

PA (%) 44.3 63.9 66.5 44.3 59.7 65.8 

UA (%) 64.4 54.8 61.3 55.9 54.7 61.4 

OA (%) 59.3 57.6 

 0.380 0.356 

10-meter 

PA (%) 44.4 60.6 62.4 42.0 49.5 64.7 

UA (%) 56.3 55.6 57.0 52.3 52.7 51.4 

OA (%) 56.2 52.1 

 0.338 0.279 

20-meter 

PA (%) 61.9 37.0 68.0 38.1 51.9 64.0 

UA (%) 50.0 43.5 70.8 50.0 50.0 55.2 

OA (%) 54.8 52.1 

 0.324 0.273 
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Figure 5. Examples of the classified activities of shallow translational landslides with different 

spatial resolutions using the DT and SGB methods 
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For deep-seated rotational landslides, the classification using all the methods achieved moderate 

accuracy results, where the OA was between 51.4% to 67.0% and 52.6% to 61.9% for DT and 

SGB, respectively, while the  values ranged from 0.263 to 0.502 (DT) and 0.281 to 0.425 (SGB). 

Again, DT consistently yielded the highest OA for all spatial resolution categories except 20 m, 

with 66.6%, 67.0%, 62.8%, 59.1%, and 51.4% for 0.5 m, 1 m, 5 m, 10 m, and 20 m resolution 

categories, respectively. Moreover, the  value also shows that DT has achieved a significant 

increase in classification accuracy with recorded values of 0.496 (0.5 m), 0.502 (1 m), 0.439 (5 m), 

0.382 (10 m), and 0.263 (20 m). The increase of 15.6% of OA from 51.4% (20 m) to 67.0% (1 m) 

for DT and 9.3% for SGB indicates that the higher the spatial resolution, the more stable the OA 

result. 

 

Table 4. Accuracy assessment of classified activities of deep-seated rotational landslide using the 

boosting technique 

Deep-Seated, Rotational 

Resolution Assessment 
DT SGB 

Active Dormant Relict Active Dormant Relict 

0.5-meter 

PA (%) 59.4 68.3 71.2 52.1 63.6 68.6 

UA (%) 65.1 66.1 68.2 60.9 60.9 63.5 

OA (%) 66.6 61.9 

 0.496 0.425 

1-meter 

PA (%) 59.3 68.7 71.9 51.8 63.4 68.9 

UA (%) 65.5 66.8 68.4 60.6 61.1 63.3 

OA (%) 67.0 61.8 

 0.502 0.423 

5-meter 

PA (%) 56.3 63.5 67.5 49.5 60.5 68.2 

UA (%) 59.9 63.4 64.4 57.7 59.6 61.7 

OA (%) 62.8 59.9 

 0.439 0.395 

10-meter 

PA (%) 46.4 64.2 65.0 43.1 61.1 64.7 

UA (%) 59.8 56.3 61.8 53.3 54.0 61.0 

OA (%) 59.1 56.9 

 0.382 0.350 

20-meter 

PA (%) 41.9 57.3 53.0 43.2 61.5 50.6 

UA (%) 48.4 52.4 52.4 50.0 55.7 50.6 

OA (%) 51.4 52.6 

 0.263 0.281 
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Figure 6. Examples of the classified activities of deep-seated rotational landslides with different 

spatial resolutions using the DT and SGB methods  
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The classification accuracy was satisfactory in shallow rotational landslides, as shown in Table 5. 

The OA was between 57.4% and 80.0% (DT) and 67.2% and 75.9% (SGB), while  was between 

0.360 and 0.669 (DT) and 0.506 and 0.638 (SGB). DT consistently reported the best OA especially 

high spatial resolution categories (0.5 m–5 m) with 79.7%, 80.0%, 73.6%, 69.7%, and 57.4% for 

0.5 m, 1 m, 5 m, 10 m, and 20 m resolution categories, respectively. Additionally, the  value 

shows that DT has achieved a significant increase in classification accuracy with values of 0.695 

(0.5 m), 0.699 (1 m), 0.603 (5 m), 0.646 (10 m), and 0.360 (20 m). The OA for DT increased from 

57.4% (20 m) to 80.0% (1 m) with changes of 22.6% and 8.7% for SGB, indicating that the OA 

remains steady when the spatial resolution size reduces. 

 

Table 5. Accuracy assessment of classified activities of shallow rotational landslide using the 

boosting technique 

Shallow, Rotational 

Resolution Assessment 
DT SGB 

Active Dormant Relict Active Dormant Relict 

0.5-meter 

PA (%) 81.9 74.4 82.6 77.9 71.3 78.1 

UA (%) 84.0 81.1 73.9 81.6 74.7 70.8 

OA (%) 79.7 75.8 

 0.695 0.637 

1-meter 

PA (%) 82.3 74.1 83.4 78.1 70.6 78.7 

UA (%) 84.4 81.9 73.7 80.7 75.7 71.0 

OA (%) 80.0 75.9 

 0.699 0.638 

5-meter 

PA (%) 77.7 67.5 74.9 75.6 67.5 77.1 

UA (%) 76.3 72.0 72.0 77.4 71.1 71.8 

OA (%) 73.6 73.6 

 0.603 0.603 

10-meter 

PA (%) 74.4 60.9 75.0 75.6 58.6 80.9 

UA (%) 74.4 72.6 62.2 74.7 72.9 65.5 

OA (%) 69.7 71.0 

 0.546 0.565 

20-meter 

PA (%) 71.4 48.0 59.1 71.4 68.0 63.6 

UA (%) 50.0 57.1 65.0 50.0 70.8 82.4 

OA (%) 57.4 67.2 

 0.360 0.506 
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Figure 7. Examples of the classified activities of shallow rotational landslide with different spatial 

resolutions using the DT and SGB methods  
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The classification results for each activity class are analysed by measuring the producer’s accuracy 

(PA) and the user’s accuracy (UA). All the methods recorded reliable results of PA and UA for 

deep-seated translational landslides, especially for 0.5 m to 10 m spatial resolution categories, as 

stated in Table 2. The PA values ranged from 36.4%–86.0%, 62.5%–90.3%, and 69.7%–99.2% for 

active, dormant, and relict, respectively, while UA values ranged from 50.0%–91.7% (active), 

66.7%–89.8% (dormant), and 63.6%–97.7% (relict). By averaging the PA and UA values for all 

the methods with specific spatial resolution categories, the active class recorded slightly higher UA 

than PA, with the highest average values of 83.1% and 82.4%, respectively. This indicates the 

lesser magnitude of misclassification of other categories as active classes (low commission errors). 

However, the misclassification of the active class, mainly dormant landslides, can be examined 

from the classified results as depicted in Figure 4, indicating that the active class also had omission 

errors, particularly for large spatial resolution size categories. Meanwhile, dormant and relict 

classes exhibited nearly the same PA and UA in the classified landslides, indicating the prevalence 

of significantly considerable spectral/variable homogeneity in them, with the highest average 

values of 88.7% (PA) and 84.4% (UA) for dormant, and 90.8% (PA) and 92.5% (UA) for relict. 

Both classes experienced low omission and commission errors in the classified results. In the case 

of shallow translational landslides, the PA values ranged from 38.1%–61.9%, 37.0%–68.9%, and 

62.4%–71.5% for active, dormant, and relict classes, respectively. Meanwhile, UA values ranged 

from 50.0% to 68.3% for active, 43.5% to 63.1% for dormant, and 51.4% to 70.8% for relict. For 

the active class, the highest average values of UA (66.3%) and PA (50.0%) were classified as 

moderate and poor, respectively. This finding indicates that there were clear omissions of the active 

class (classified as dormant) in the results, as depicted in Figure 5. For the dormant class, moderate 

values of UA and PA were recorded, with the highest average values of 62.5% and 67.2%, 

respectively. The PA of relict was high (the highest average value of 71.5%), indicating that the 

relict class had low omissions and high commissions observed from the classified results since a 

moderate value of UA was recorded. 

For deep-seated rotational landslides, the PA values ranged from 41.9%–59.4%, 57.3%–

68.7%, and 50.6%–71.9% for active, dormant, and relict classes, respectively, while UA values 

ranged from 48.4%–65.5% (active), 52.4%–66.8% (dormant), and 50.6%–68.4% (relict), which 

can be categorised as moderate results. The active class exhibited much higher UA than PA in the 

classified landslide, with the highest average values of 55.7% (PA) and 63.1% (UA). Dormant class 
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results were substantially identical to active class results, with maximum averages of 66.0% and 

64.0% for PA and UA, respectively, while the relict class recorded slightly higher values than the 

dormant class, with 70.4% (PA) and 65.9% (UA). The assessment of PA and UA showed 

satisfactory accuracy results for shallow rotational landslides, especially for 0.5 m to 10 m spatial 

resolution categories. The PA values ranged from 71.4%–82.3%, 48.0%–74.4%, and 59.1%–83.4% 

for active, dormant, and relict classes, respectively, while UA values ranged from 50.0%–84.4% 

(active), 57.1%–81.9% (dormant), and 62.2%–82.4% (relict). By averaging the PA and UA values, 

boosting technique yielded satisfactory results with 80.2% (PA) and 82.8% (UA) for the active 

class, 72.9% (PA) and 78.8% (UA) for the dormant class, and 81.1% (PA) and 72.3% (UA) for 

relict class. By visualising the classification results, as shown in Figure 7, the dormant class tends 

to be classified as a relict class (omission error), especially for large spatial resolution size 

categories—the misclassification of dormant as relict was obvious, due to both classes’ sharing 

similar vegetation characteristics. 

 

5. Conclusion 

 

Landslide state of activity classification in tropical forests can be more challenging than in other 

regions due to the complex and dynamic nature of tropical forest ecosystems. The dense vegetation 

cover, varied topography, and high rainfall can make detecting signs of instability or movement on 

slopes difficult. Furthermore, landslide activity in tropical forests can be influenced by a range of 

factors, including the types of trees and other vegetation, soil characteristics, and the intensity and 

duration of rainfall. This means that a more detailed and comprehensive assessment of the area 

may be required to classify the state of landslide activity accurately. Vegetation can provide 

essential clues to the stability of a slope and can be used to help classify landslide states of activity 

in tropical forests. Therefore, this study has utilised VAIs as a predictor in classifying landslide 

activity. Two types of boosting techniques were used, namely DT and SGB. 

In summary, boosting technique, i.e. DT and SGB, successfully classified the landslide 

activity using VAIs, whereas the DT method produced higher accuracy results than the SGB 

approach. The maximum OA of 89.6%, 64.0%, 61.9%, and 80.0% for deep-seated, shallow, deep-

seated, and shallow rotational, respectively, indicates that different landslide types and depths 

could produce different accuracy results. Analysing the spatial resolution’s effect on classification 
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accuracy, better accuracy results were obtained for high spatial resolution categories regardless of 

the different parameter setting algorithms used. 
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