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Abstract - As Hungary has the largest expanse of naturally salt-affected soils in Europe with a continuous decrease in 

groundwater levels due to climate change, the expansion of saline soils to the detriment of arable lands has become a potential 

risk that requires continuous monitoring to sustain agricultural productivity and ensure food security. The study aims to estimate 

soil salinity in the Great Hungarian Plain, Eastern Hungary, using Sentinel-1 Synthetic Aperture Radar (SAR) C-band and 

Landsat-8 OLI data combined with three state-of-the-art machine learning models, i.e., Artificial Neural Network with feature 

extraction (PCANNET), Random Forest (RF) and Support Vector Machine (SVM). For this purpose, seventy-four soil samples 

provided by the Research Institute of Soil Sciences and Agricultural Chemistry (RISSAC) were collected in the Hungarian Soil 

Information and Monitoring System framework between September and October 2016. We compared the predictive 

performance of machine-learning-based models using the root mean square error (RMSE) and the correlation coefficient (r). 

The results revealed that the SVM-based model outperformed the other machine learning models with an RMSE equal to 0.24 

g/kg and a correlation coefficient of 0.73. The study demonstrates the efficiency of machine learning techniques as valuable 

alternatives to estimate soil salinity and assist in land management planning with affordable costs.  
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1. Introduction

In the last decades, extensive progress has been made to predict soil salinity at regional and 

local scales using data retrieved from optical and radar sensors (Taghadosi et al., 2019, 

Szatmári et al., 2020, Sahbeni, 2021a). Nevertheless, salinity assessment at the farm scale can 

be challenging due to the lack of funding for extensive field surveys that enable a continuous 

monitoring system over the vulnerable zone. Furthermore, dealing with high-resolution 

multispectral and SAR data in terms of preprocessing, processing and storage depict a crucial 

aspect to be considered by experts before initiating such expensive research projects on bigger 

scales. Many scientists have studied multispectral data effectiveness to detect salinization 

inland based on spectral indices, including Land Surface Temperature (LST), Normalized 

Difference Vegetation Index (NDVI), albedo, Canopy Response Salinity Index (CRSI), and 

Vegetation Soil Salinity Index (VSSI) (Scudiero et al., 2017, Sahbeni, 2021b). Due to its 

operation under all weather conditions, radar sensors represent valuable instruments in soil 

salinization investigation by retrieving SAR intensity values from different polarizations (VV, 

VH, HH, and HV) (Grissa et al., 2011, Muhetaer et al., 2022). Fewer studies have exploited 

machine learning tools using radar and multispectral data to model this dynamic environmental 

process with acceptable accuracy (Zarei et al., 2021, Aksoy et al., 2021, Chen et al., 2020). Ma 

et al. (2021) have successfully mapped salinization over The Ogan-Kuqa River Oasis based on 

Sentinel-1 and Sentinel-2 data using machine learning algorithms. As the XGBoost model 

showed its superiority (R2 = 0.68), the combination of topographic variables, spectral indices 

and SAR features effectively improved the approach accuracy, revealing the role of multi-

source data combination in enhancing the output quality. Similarly, Hoa et al. (2019) used 

Sentinel-1 SAR data to spatially model climate-change-induced salinization in Ben Tre 

Province (Vietnam) while comparing the statistical performance of five machine learning 

models. The study has shown that the Gaussian Processes outperformed other methods with 

the highest correlation coefficient (R = 0.81), serving as a valuable tool for policymakers to 

implement sustainable agricultural systems locally to reduce climate change impacts. 

Our study aims to estimate soil salinity using remotely sensed data derived from 

Landsat-8 OLI and Sentinel-1 SAR sensors and compare the predictive performance of three 

machine learning-based models: neural network with feature extraction, regression random 

forest, and support vector machine. 
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2. Materials and Methods 

2.1 Study Area 

The study area is located in Eastern Hungary. It covers around 8322 km2 over the Great 

Hungarian Plain (Figure 1). It is distinct by a moderately warm-dry climate with a mean annual 

precipitation of 560 mm and a mean yearly evaporation of 900 mm. Meadow chernozems and 

humic sandy soils dominate the landscape with a large agricultural land cover (Pásztor et al., 

2018). Seventy-four soil samples were collected between mid-September and mid-October 

2016 in the Hungarian Soil Information and Monitoring System framework from vegetated and 

non-vegetated areas. Salt content is measured in the laboratory from saturated paste according 

to the Hungarian Standard MSZ- 08-0206/2-1978 (JRC-IES, 2013). Values range between 0 

and 5.6 g/kg of soil. 

 

Figure 1. Location of sampling sites. 

 

2.2 Dataset 

Sentinel-1 SAR Ground Range Detected (GRD) product, acquired on 11 September 2016, was 

preprocessed using Sentinel-1 Toolbox. SAR data were radiometrically corrected, filtered from 

the speckle effect using a three-by-three Lee filter, and converted to a decibel scale. Then, 

Range Doppler Terrain Correction was applied. 
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Three Landsat-8 OLI Level-1 C products acquired on 20 May, 08 August, and 09 

September 2016 were atmospherically and radiometrically corrected using the Fast Line-of-

sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) algorithm in ENVI IDL 5.3. 

Once multispectral data were preprocessed and stacked, spectral indices and principal 

component analysis (PCA) were derived to enhance data quality and reduce spectral 

dimensionality. 

 

2.3 Methodology 

We computed twenty spectral indices as presented in Table 1. Then spectral information was 

extracted from Landsat-8 OLI data using ArcMap 10.3. For SAR data, corresponding values 

were retrieved in intensity (dB) from the following features: VV, VH, VV – VH, and VV/VH. 

We used variables derived from Landsat-8 OLI and Sentinel-1 SAR to train three machine 

learning-based models, i.e., Neural network with feature extraction (PCANNET), Regression 

Random Forest (RF), and Radial Kernel Support Vector Machine (SVM). We used the 

following packages within R Studio to train and calibrate the models: ‘randomForest’ for RF, 

‘e1071’ for SVM and ‘pcaNNET’ for PCANNET. An extensive explanation can be found in 

the R manuals. Then, we calculated the correlation coefficient (r) and root mean square error 

(RMSE) for accuracy assessment. Figure 2 summarizes the adopted methodology. 

 

Figure 2. Methodology of the study. 

 

 

 

 

https://cran.r-project.org/manuals.html
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Table 1. Spectral indices used in this study and their mathematical expressions. 

Index Expression 

albedo ((0.356 ˟ B) + (0.130 ˟ R) + (0.373 ˟ NIR) 

+ (0.085 ˟ SWIR1) + (0.072 ˟ SWIR2) – 

0.0018) /1.016 (Silva et al., 2016) 

Differential Vegetation Index DVI NIR – R (Basso et al., 2000) 

Green Normalized Difference Vegetation 

Index GNDVI 

(NIR – G) / (NIR + G) (Wu et al., 2014) 

Intensity Index Int1 (G + R) / 2 (Bouaziz et al., 2011) 

Intensity Index Int2 (G + R + NIR) / 2 (Bouaziz et al., 2011) 

Normalized Difference Moisture Index 

NDMI 

(NIR – SWIR1) / (NIR + SWIR1) 

(Wilson et al., 2002) 

Normalized Difference Salinity Index NDSI (R − NIR) / (R + NIR) (Khan et al., 2005) 

Salinity Index 1 SI1 √ (G ˟ R) (Douaoui et al., 2006) 

Salinity Index 2 SI2 √ (NIR˟ R) (Dehni et al., 2012) 

Salinity Index 3 SI3 √ (G2 + R2 + NIR2) ( Douaoui et al., 2006) 

Salinity Index 4 SI4 √ (R2 + G2) (  Yahiaoui et al., 2015) 

Normalized Difference Vegetation Index 

NDVI 

(NIR − R) / (NIR + R) (Rouse et al., 1974) 

Soil Adjusted Vegetation Index SAVI ((NIR – R) / (NIR + R + L)) × (1 + L) 

(Huete et al., 1988) 

Enhanced Vegetation Index EVI 2.5 ˟ (NIR − R) / (NIR+C1 ˟ R− C2 ˟ B+L) 

(Huete et al., 2002) 

Brightness Index BI √ (R2 + NIR2) (Khan et al., 2005) 

Bare Soil Index BSI (G + NIR) / (G − NIR) (Li et al., 2013) 

Normalized Pigment Chlorophyll Ratio 

Index NPCRI 

(R − B) / (R + B) (Merzlyak et al., 1999) 

Soil Salinity and Sodicity Index 1 SSSI1 SWIR1 − SWIR2 (Bannari et al., 2008) 

Soil Salinity and Sodicity Index 2 SSSI2 (SWIR1 ˟ SWIR2 – SWIR2 ˟ SWIR2)/ 

SWIR1 (Bannari et al., 2008) 

Normalized Difference Salinity Index VSSI 2 ˟ G – 5 ˟ (R + NIR) (Dehni et al., 

2012) 
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3. Results 

Table 2 illustrates the correlation coefficient (r) and RMSE results. The SVM-based model has 

the highest correlation coefficient (R = 0.73) and the lowest RMSE value (= 0.24). Figure 3 

illustrates the relationship between measured normalized salt content (x) and predicted 

normalized salt content values (y). Its robustness can explain SVM superiority in cases of high 

dimensionality where the variables number is higher than the sample size. The advantage of 

using a radial basis kernel is eliminating overfitting issues caused by multicollinear variables. 

The results agree with studies by Jiang et al. (2019), Klibi et al. (2020), and Wang et al. (2021) 

regarding SVM algorithm effectiveness in soil salinity prediction. This research can be a 

scientific reference for determining the most suitable machine-learning algorithm to estimate 

soil salinity under semi-arid climates. 

 

Table 2. Performance of three state-of-the-art machine learning models. 

Model PCANNET RF SVM 

Correlation Coefficient (R) 0.65 0.71 0.73 

RMSE (g/kg) 0.25 0.29 0.24 

 

Figure 3. Relationship between measured (x) and estimated (y) Normalized Salt Content 

values using; (a) PCANNET-based model, (b) RF-based model, and (c) SVM-based model. 

 

4. Conclusions 

This study elucidates the potential of machine learning techniques combined with remote 

sensing tools in salinity prediction. Optical data retrieved from Landsat-8 OLI with Sentinel-1 

SAR features have been used in this work. The SVM-based model showed superiority with a 

correlation coefficient of 0.73 and an RMSE of 0.24 g/kg. Nonetheless, more calibration is 

required to obtain optimal predictions. The preliminary findings revealed that combining data 
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from multiple sources can be a promising approach in salinization monitoring with lower costs 

and a more sustainable environment at the early stages. 
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