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Abstract - Hyperspectral data is usually used as the main source of data for remotely sensed tree species identification. 

However, the number of hyperspectral sensors available in Malaysia is limited. This study aims at evaluating the performance 

of unmanned aerial vehicle (UAV)-based OCITM-F hyperspectral imager sensor in identifying six tree species on the campus 

of Forest Research Institute Malaysia (FRIM). This study attempts to compare data types and classification approaches to find 

the best way to identify the tree species. Besides reflectance (R) and derivative (D) spectra, a log of spectral reflectance (LogR) 

and derivative of the log of spectral reflectance (DLogR) were evaluated using Random Forest (RF) and Support Vector 

Machine (SVM) classifiers. Boruta technique was also used to reduce the dimensionality of the data input. The results 

demonstrate that the performances varied with different combinations of data input and classifier. Reflectance spectra classified 

with SVM classifier gave the highest accuracy of 72.6% (Kappa 0.6421), while the lowest accuracy was achieved with the 

combination of derivative spectra and RF classifier with an accuracy of 52.9% (Kappa 0.4026). Based on this study, the UAV-

based OCITM-F hyperspectral imager sensor has the potential to be used to identify forest tree species in a tropical forest with 

good accuracy. 
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1. Introduction 

Remote sensing technology becomes an essential tool in every aspect of forest monitoring and 

planning. Hundreds of remote sensing satellites have been launched into space and have been 

operating for the past decades. Each sensor has its specification and purposes, which enable 

users to select the best remote sensing data and utilize it to meet the desired outputs. Higher 

spatial resolution sensors, such as WorldView or Pleiades satellites, have better detection of 

smaller objects on the ground. On the other hand, higher spectral resolution sensors mounted 

on Hyperion or Terra/Aqua satellites provide better spectral information of the objects on the 

ground despite being lower in terms of spatial resolution. 

Hyperspectral data provides more spectral information than multispectral data and it is 

usually used for the detection and identification of objects or features that cannot be identified 

by using lower spectral resolution data. Classification of minerals, terrestrial vegetation, and 

man-made materials are some of the uses of hyperspectral data. Numerous studies have also 

been done with regards to the use of hyperspectral data in forestry (Yu et al., 2021, Mäyrä et 

al., 2021; Halme, Pellikka and Mõttus, 2019). Tree species identification is among the most 

popular study when it comes to applications related to forestry (Mäyrä et al., 2021; Liu, Coops, 

Aven and Pang (2017); Dalponte et al., 2014; Puttonen et al., 2010). UAV-based OCITM-F 

Hyperspectral Imager is one of the available sensors in this country. However, there is no 

published report pertaining to the applications of this sensor in vegetation studies compared to 

other sensors such as studies by Érika et al., 2021; Chen et al., 2021; Vangi et al., 2021; Miyoshi 

et al., 2020; Nezami et al., 2020. Thus, there is a need to explore the potential of this sensor, 

especially for identification of forest tree species. The results of this study can be used as a 

baseline information for other studies in the future.  

Tree species and its diversity is one of the key indicators for forest quality and levels 

of richness in a forest ecosystem. Species composition in a forest is also an important aspect in 

a forest inventory and logging industry, where the Selective Management System (SMS) 

approach always considers species composition before a forest area can be opened for logging 

to ensure the sustainability of the forests in the future. However, identification of tree species 

requires experts or botanists to conduct work at the field. This is a tedious work especially 

when the forest area is large and with a shortage of botanists.  Therefore, this study aims to 

examine the capability and explore the potential uses of Unmanned Aerial Vehicle (UAV-

based) OCITM-F Hyperspectral Imager in identifying forest tree species. 
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2. Methodology 

Figure 1. The methodology used in this study. 

 

2.1 Study area 

This study was carried out in Forest Research Institute Malaysia (FRIM), Selangor, Malaysia. 

FRIM is located in the northern part of Kuala Lumpur city center, covering approximately 

544.76 hectares. This campus is covered mainly by planted forests of more than 90 years old. 

This area consists of several forest zones such as plantation zone (with various local and exotic 

species), natural forests, arboretums, and also administrative zone. However, only a small area 

in an old-growth forest of about 70 years old was chosen as the test site (Figure 2). 
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Figure 2. Location of the test site in FRIM Campus. 

 

2.2 Field data collection 

Field data collection was carried out on the test site. Information such as crown diameter, 

height, and status of each tree was recorded along with its location and species. Only trees that 

have a diameter of 30 cm and above measured at breast height were recorded. However, only 

canopy and emergent trees were selected and used in this study. Only six species, which are 

Dipterocarpus Baudii, Neobalanocarpus Heimii, Palaquium Gutta, Scorodocarpus 

Borneensis, Shorea Bracteolate and Shorea Leprosula, were chosen to test the capability of 

OCITM-F Hyperspectral image to identify these trees. The distribution of 168 trees in the test 

site is shown in Figure 3. The data were randomly divided into training and testing sets with 

the proportion of 70% and 30%, respectively. The number of training samples used in this 

study is shown in Table 1. 
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Figure 3. Distribution of every species in the test site overlaid with OCITM-F Hyperspectral 

image in grayscale. 

 

Table 1. The number of training and testing samples used for the classification and accuracy 

assessment. 

Species Training Testing Total 

Dipterocarpus Baudii 37 17 54 

Neobalanocarpus 

Heimii 

14 2 16 

Palaquium Gutta 13 8 21 

Scorodocarpus 

Borneensis 

9 5 14 

Shorea Bracteolate 25 11 36 

Shorea Leprosula 19 8 27 

Total 117 51 168 
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2.3 Hyperspectral data collection 

The hyperspectral image was acquired in July 2018 by using the OCITM-F Hyperspectral 

Imager sensor mounted on the DJI matrices drone. This sensor has 116 spectral bands, range 

from 400 to 1000 nm. Detail on the specification of this sensor can be found on their official 

website, https://www.bayspec.com/spectroscopy/oci-f-hyperspectral-imager/. This sensor was 

calibrated using the white calibration panel before it began capturing the image of the test site 

at 150 m above the ground. The drone was flying at this height is to get images with higher 

spatial resolution since the height during data capture can affect the spatial resolution of the 

image. As the flying height increases, the spatial resolution of the image would become lower. 

Another reason to fly at this altitude as opposed to a higher altitude is to provide better stability 

of the hyperspectral sensor to capture images in the study area. The image acquisition activity 

was carried out at noon on a sunny day and with minimum cloud cover covering the test.   

 

2.4 Image pre-processing 

Several steps are involved in producing a single image that covers the test site. First, all images 

that have been captured were radiometrically corrected using the spectral reflectance curve 

calibrated from the white reflectance panel. The images were then stitched together to produce 

a single image. Finally, a geometric correction was performed to the image to ensure the 

location of every tree is aligned to its location on the ground. These processes were done by 

using CubeCreator and geospatial software. The output image consists of 116 bands with a 

spatial resolution of 0.5 m and the interval between the spectral band is 5.15 nm. Furthermore, 

the output image produced is in the reflectance unit. However, the image was not further 

calibrated or validated using field data. The next important step was to perform denoising to 

the image (Govil et al., 2021; Ge et al., 2018). Minimum Noise Fraction (MNF) is the most 

common technique for reducing the noise in the image. This technique transforms noisy data 

into output channel images with steadily decreasing image quality because of increasing noise 

levels. Principle Component Analysis (PCA) is also one of the common techniques for 

hyperspectral data denoising. Unlike MNF, PCA transforms noisy data and arrange the output 

channel images based on variance. The first principal component image will have the largest 

variance as compared to the subsequent images. MNF technique was used to minimize the 

noise in the image since some previous studies showed this technique gave a superior result as 

compared to PCA (Ge et al., 2018; Hycza, Stereńczak and Bałazy, 2018). 

First, forward MNF transform was performed using the spectral reflectance image to 

estimate noise statistics. The number of output bands was determined based on the eigenvalue. 
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The number of bands that have been selected in this transform was 20 bands, with the 

cumulative eigenvalue of the output MNF image is around 70%.  Then, inverse MNF transform 

was done to reduce the noise in the original spectral reflectance data. By doing this step, the 

spectral reflectance image will have the same number of bands as the original spectral 

reflectance image. The MNF process was done using the software ENVI 5.0.  

 

2.5 Image processing 

The image processing phase involves few important steps, which are tree delineation, data 

transformation, classification, and post classification. For tree delineation, the crown of each 

tree was manually segmented based on visual interpretation and with the aid of tree positional 

information collected on the ground. The Pixel Purity Index (PPI) process was performed on 

the image to retrieve the purest pixel in the image. The average spectra of each tree were 

calculated based on PPI image and crown diameter data. The crown diameter of each tree that 

was collected at the field was used as base data to select which purest pixels belongs to which 

trees. This is to ensure that only the purest pixels that reside within the crown diameter of each 

tree were used in the process of calculating the average spectra for each tree. Only denoised 

spectral reflectance curves that have the purest pixel and within the crown diameter of each 

tree were extracted and then aggregated to get the average spectra for that tree. In the end, each 

tree will have one spectral reflectance curve that represents one particular tree. Based on the 

PPI image, the number of pure pixels that represent each tree is different. Some trees only have 

few pure pixels, while other trees with large crown diameters have slightly more pure pixels.  

The spectral reflectance (R) for each tree was then transformed into other forms of 

spectra. There are lots of spectral transformation can be applied to the spectral reflectance. The 

first derivative (D) is one of the most popular spectral transformations. This form of data shows 

that it can improve classification accuracy when compared to spectral reflectance. Based on 

the study done by Cao et al. (2018), the first derivative dataset has improved the classification 

accuracy, and the derivative of logarithmic spectral reflectance (D[log(R)]) gave higher 

classification results. Following the same method, the spectral reflectance data for each tree 

was also transformed into three spectra, which are D, D[log(R)], and logarithmic spectral 

reflectance (Log(R)). These four types of spectral data were used as a data input for the 

classification process. Before all these data were used in the next process, some bands, 

especially at the green and near-infrared regions, were omitted due to their high signal-to-noise 

ratio. Consequently, only 60 bands were finally used for further analysis. 
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2.6 Band selection 

Some of the bands in hyperspectral data are inter-correlated, which can decrease the 

classification accuracy. Thus, only informative bands were selected in this study to maximize 

the classification accuracy. Generally, there are three types of feature selection methods which 

are filter (e.g., correlation metrics, Chi-square test, ANOVA, etc.), wrapper (a subset of features 

using forward selection or backward elimination), and embedded (e.g., Lasso) methods. The 

Boruta algorithm, which is an embedded method, is a wrapper built around the random forest 

classification algorithm. This algorithm creates a shuffled copy (shadow bands) from the 

training data. Then, it trains a random forest classifier on the original and shadow bands to 

evaluate the importance of each band. It checks whether a real band has higher importance and 

removes unimportant bands. The Boruta algorithm stops either when all bands get confirmed 

or rejected or it reaches a specified limit of random forest (Kursa and Rudnicki, 2010). 

 

2.6 Classification and accuracy assessment 

The classification process was done by using two classifiers, which are the Random Forest 

(RF) and Support Vector Machine (SVM). RF is a supervised classifier where it creates a forest 

with several trees. It builds multiple decision trees and then combines them to get a more 

accurate and stable prediction (Genuer and Poggi, 2020). The combined prediction is able to 

reduce the variation in the predictions. Three parameters in RF classifier, namely Mtry, 

Maxnodes, and Ntree, were explored and tested to get the maximum classification accuracy.  

SVM is a fast and dependable classification algorithm that performs very well with a 

limited amount of data to analyze (Sothe et al., 2019). It finds a hyperplane in an N-dimensional 

space that distinctly classifies the data points (Sothe et al., 2019; El-Hadi et al., 2014). SVM 

will find a plane that has the maximum margin, i.e. maximum distance between data points of 

two classes. Three kernel functions, which are linear, polynomial, and radial, were tested in 

this study to find a kernel that can give the highest classification result.  RF and SVM were 

trained by using 117 training samples. The classification accuracy for each combination of data 

input and classifier was performed using 51 testing samples.  

 

 

 

 

 

 



   

153 
 

3. Results 

3.1 Spectral properties of forest tree species 

In general, the average spectral reflectance curves for six forest species (Figure 4) showed little 

variations across all spectral bands. The only differences that can be seen from the spectral 

reflectance curves are at the red edge and near-infrared regions. Dipterocarpus Baudii, 

Neobalanocarpus Helmii, and Shorea Bacteolata have slightly brighter green colours and this 

makes the spectral reflectance curve for these three species is slightly higher than the rest. The 

variation between six species becomes more apparent at the visible region when the spectral 

reflectance curves were transformed to logarithmic spectral reflectance. As for the first-order 

derivative of the spectral curve (D), the variation across spectral bands is small except in the 

red edge region. A similar pattern can also be seen with the first-order derivative of log-

transformed spectral curve D[log(R)], where a higher variation between species is observed at 

the red edge region. It is also observed that D and D[log(R)] spectral curves are not as smooth 

as the R and Log(R). This may indicate that noise is still presented in the R and Log(R) spectral 

curves, which affect the spectral curves of D and D[log(R)], despite the MNF transformation 

had been applied to the hyperspectral image before the data were analyzed. 

Figure 4. The average spectral reflectance curves, the spectral curves of derivative and 

logarithmic transformation of six forest species. (a) R: the average reflectance curve, (b), 

Log(R): logarithmic of spectral reflectance (c) D: the average first-order derivative of the 

spectral curve, and (d) D[log(R)]: the average first-order derivative of the log-transformed 

spectral curves.  
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3.2 Optimal band selection 

The Boruta algorithm that was used to select only the important bands for the classification 

process showed that the number of bands selected for each data input varies from each other, 

as shown in Table 2. Overall, 11 bands were constantly selected by the Boruta algorithm 

regardless of the data input used in this study. Ironically, the number of bands selected by this 

algorithm for both R and Log(R) are identical, which is 46 bands. The similarity of spectral 

curves between Log(R) and R may result in the same number of bands selected by this 

algorithm, although higher spectral variation in the visible region is observed in the Log(R) 

data set as compared to the R data set. The number of important bands for D and D[Log(R)] 

data sets is lower than the number of bands for R and Log(R) with 23 and 32 bands, 

respectively.  Although D and D[Log(R)] have lower bands for classification, this is not an 

indicator that the classification accuracy will be lower than R and Log(R) data sets, which have 

a higher number of bands, because classification accuracy also depends on other factors such 

as sample size, classifier selection, number of species and other factors.  

 

Table 2. The number of important bands is selected by the Boruta algorithm. 

 

Data Input Number of 

bands 

Selected band (wavelength) 

R 46 507.125, 512.275, 517.425, 522.575, 527.725, 

532.875, 538.025, 543.175, 548.325, 553.475, 

568.925, 584.375, 594.675, 599.825, 604.975, 

610.125, 615.275, 620.425, 625.575, 630.725, 

635.875, 641.025, 646.175, 651.325, 656.475, 

661.625, 666.775, 671.925, 677.075, 682.225, 

687.375, 692.525, 697.675, 702.825, 754.325, 

759.475, 764.625, 769.775, 774.925, 780.075, 

785.225, 790.375, 795.525, 800.675, 805.825, 

810.975 

Log(R) 46 507.125, 512.275, 517.425, 522.575, 527.725, 

532.875, 538.025, 543.175, 548.325, 553.475, 

568.925, 584.375, 594.675, 599.825, 604.975, 

610.125, 615.275, 620.425, 625.575, 630.725, 
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635.875, 641.025, 646.175, 651.325, 656.475, 

661.625, 666.775, 671.925, 677.075, 682.225, 

687.375, 692.525, 697.675, 702.825, 754.325, 

759.475, 764.625, 769.775, 774.925, 780.075, 

785.225, 790.375, 795.525, 800.675, 805.825, 

810.975 

D 23 543.175, 558.625, 574.075, 599.825, 625.575, 

641.025, 651.325, 656.475, 661.625, 666.775, 

671.925, 677.075, 687.375, 692.525, 718.275, 

723.425, 728.575, 733.725, 738.875, 744.025, 

749.175, 754.325, 759.475 

D[Log(R)] 32 517.425, 527.725, 532.875, 558.625, 574.075, 

579.225, 584.375, 589.525, 594.675, 599.825, 

625.575, 641.025, 646.175, 651.325, 656.475, 

661.625, 666.775, 671.925, 677.075, 682.225, 

687.375, 697.675, 702.825, 707.975, 713.125, 

718.275, 723.425, 728.575, 733.725, 738.875, 

744.025, 759.475 

*Bold number is the bands that were selected as important bands by the Boruta algorithm. 

 

3.3 Classification results using RF classifier 

Four hyperspectral datasets were used as an input for the classification process using an RF 

classifier. The classification of each dataset was performed using only the best bands selected 

by Boruta algorithm. The classification accuracy for each dataset is shown in Table 3. The 

highest classification accuracy was achieved by using D[Log(R)] dataset with an overall 

accuracy of 68.6% (kappa 0.5958). This maximum accuracy was achieved by Tuning Mtry, 

Maxnodes, and Ntree in RF classifier to 17, 12, and 350, respectively. Despite being lower in 

terms of the number of important bands selected by the Boruta algorithm as compared to R and 

Log(R), it still can outperform those two datasets. R and Log(R) datasets have achieved an 

overall accuracy of 66.7% and 62.8% and kappa coefficient of 0.5634 and 0.5091, respectively. 

The optimal parameter settings for RF classifier for both data sets are different, although 

identical bands were used. The same settings were also tested for R and Log(R) datasets to see 

if both datasets will give the same result. The results show that the accuracies for both datasets 

are differed. Only D dataset presents the lowest classification accuracy among other datasets 
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with an accuracy of 52.9% (kappa 0.4026). This dataset is also the only dataset that cannot 

achieve a minimum accuracy of 60%.  

 

Table 3. Classification results in terms of overall accuracy and kappa coefficient for six 

forest tree species using the best bands for each data input and classified by RF classifier. 

 

Data Input Random Forest parameter setting Overall 

accuracy (%) 

Kappa 

coefficient Mtry Maxnodes Ntree 

R 9 5 250 66.7 0.5634 

Log(R) 2 5 300 62.8 0.5091 

D 19 7 250 52.9 0.4026 

D[Log(R)] 17 12 350 68.6 0.5958 

 

3.4 Classification results using SVM classifier 

The same four hyperspectral datasets were also used as data input for SVM classification. The 

classification accuracy assessment results are shown in Table 4. The overall accuracy for each 

dataset has passed the 60% accuracy, where two of the datasets just passed the 70% accuracy. 

The use of the Log(R) dataset can achieve the highest classification accuracy of 72.6% (kappa 

0.6421) when this data was classified using a polynomial kernel. There is not much difference 

in the classification accuracy when the R dataset was used. The difference between R and 

Log(R) datasets is just 0.1% in terms of overall accuracy. This shows that a comparable 

accuracy can be achieved although different datasets were used in the classification. The kernel 

selection plays an important part in the overall accuracy.  

 Unlike the RF classifier, D[Log(R)] dataset can only achieve maximum accuracy of 

66.7% with a kappa coefficient of 0.5693. Other kernel parameters such as linear and radial 

would result in lower classification accuracy than polynomial. The use of D dataset once again 

has resulted in the lowest classification accuracy as compared to other datasets. The highest 

overall accuracy that can be achieved by this dataset is 64.7% (kappa 0.5533).  
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Table 4. Classification results in terms of overall accuracy and kappa coefficient for six 

forest tree species using different spectral datasets classified by SVM classifier. 

 

Data Input SVM Kernel Overall accuracy 

(%) 

Kappa coefficient 

R Radial 72.5 0.6383 

Log(R) Polynomial 72.6 0.6421 

D Linear 64.7 0.5533 

D[Log(R)] Polynomial 66.7 0.5693 

 

 

4. Discussion 

The overall classification accuracies achieved in this study showed mixed results with another 

studies by Shi et al., 2021; Mäyrä et al., 2021; Chunhui et al., 2018; Naidoo, et al, 2012. Some 

of the studies performed exceptionally well when using hyperspectral data for species 

identification (Shi et al., 2021; Naidoo et al., 2012). The use of hyperspectral with LiDAR data 

by Shi et al. (2021) and Naidoo et al. (2012) have yielded high classification accuracy despite 

using the same classifier as in this study. This has shown that added data can improve 

classification accuracy. Chunhui et al. (2018) used the spectral gradient technique to achieve 

high classification accuracy despite the same classification methods used in their study. Since 

this study only uses a single hyperspectral image, the classification accuracy might be 

improved if the same approach as Chunhui et al. (2018) was taken.  

Other studies demonstrated almost the same accuracy as this study (see Yu et al., 2021; 

Modzelewska et al., 2020). However, a direct comparison of this study with other studies 

cannot be made because of different use of hyperspectral sensors, data input and classification 

methods, number of species for identification, and number of training samples.  

A study by Yu et al. (2021) have demonstrated to such moderate classification accuracy 

by using the same classification method as in this study and highlighted that as the area 

becomes more heterogeneous, more errors will be seen. This is in line with this study area 

where tropical forests are complex and contain hundred species even in a small area. The 

classification accuracy might improve if more homogenous study sites was chosen in this 

study. 
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The SVM classifier is found to be superior compared to the RF classifier for all the 

three datasets used in this study. The RF classifier was found to outperform the SVM classifier 

only when using D[Log(R)] dataset but the difference is minimal (1.6%). This result is 

consistent with other literature where the SVM classifier outperforms the RF classifier when it 

comes to classification irrespective of data input and sampling size (see Grabska, Frantz and 

Ostapowicz, 2020; Cao et al., 2018; Ballanti et al., 2016; Dalponte et al., 2012). The SVM 

classifier has the advantage of being able to handle high-dimensional data without the need for 

huge sampling data. Other classifiers need to have large sampling data to perform on par with 

the SVM classifier.  

 This study also shows that transformed data can result in higher classification accuracy 

than the original data. Many studies have also demonstrated the superiority of transformed data 

over the spectral reflectance curves (Xu et al., 2019; Cao et al., 2018). The transformation of 

spectral reflectance curves to other spectral curves can improve the spectral separability among 

the features (Cao et al., 2019). It can also suppress or minimize the noise or other effects in the 

spectral reflectance curves (Pu and Gong, 2011). These factors can improve the classification 

accuracy as compared to the use of spectral reflectance curves.  

 Other factors that need to be considered to achieve higher classification accuracy are 

the selection of bands, classification methods, and training samples. Prospere, McLaren and 

Wilson (2014) highlighted that the band selection methods perform differently despite similar 

data and classifier was used in the classification. Numerous studies related to image 

classification methods have been conducted in recent years (see Grabska, Frantz and 

Ostapowicz, 2020; Hycza et al., 2019; Cao et al., 2018, Féret and Asner, 2012). These studies 

were done to assess each classifier's capability and find out the best classifier that can yield 

maximum accuracy. Besides band selection and classification methods, the number of training 

samples is also an important criterion that can influence classification accuracy. Most of the 

classifiers require an adequate training sample for the classifier to perform well. An insufficient 

number of training samples will only make the prediction less accurate. Results from Su et al., 

(2017) have shown that the classification accuracy is improving with the increasing number of 

training samples. However, as the training samples increases, the computation time is also 

increased. Pal and Foody (2010) also demonstrated that the number of training samples and 

classification features influence classification performance.  

 This study has selected only six species to test the capability of OCITM-F Hyperspectral 

data for species identification and classification. The maximum classification accuracy that can 

be achieved is 72.6%. Adding the number of species can add complexity to the classification. 
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This is because some of the trees belong to the same family, where some characteristics of trees 

in the same genus are identical.  Shorea Bracteolate and Shorea Leprosula, for example, are 

two species of trees that belong to the same family. By adding tree species from the same 

family, such As Shorea Glauca, Shorea Macroptera, Shorea Sumatrana, and others, can make 

the identification and classification process even harder. The classification accuracy can 

decrease due to an increase in classification error.  

 

5.0 Conclusion 

This study demonstrated the capability of UAV-based OCITM-F Hyperspectral data for forest 

tree species mapping with four different types of data inputs, which are R, Log®, D and 

D[Log(R)], and two mapping methods, which are RF and SVM. Overall, the data inputs and 

classifiers mapped the target species with acceptable accuracies. Classification using RF can 

achieve maximum accuracy of 68.6% with the use of the D[Log(R)] dataset. However, the 

combination of transformed data, which is Log(R), with the SVM classifier performs the best 

with an accuracy of 72.6%. This study can be used as baseline information for further 

exploration of OCITM-F Hyperspectral data to optimize the potential of this sensor for mapping 

forest tree species at a larger scale and higher accuracy as tree species play an important part 

in the biodiversity and forest management aspects. 
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