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Abstract – Urban heat islands (UHIs) pose escalating challenges for tropical cities, intensifying thermal discomfort and 

exacerbating energy demands. This study examines the impact of vegetation cover and built-up intensity on land surface 

temperature (LST) in Johor Bahru, Malaysia, by combining remote sensing-derived indices, including the normalised 

difference vegetation index (NDVI) and the normalised difference built-up index (NDBI), with multiple regression modelling 

and spatial mapping. Landsat 8 imagery was processed to generate LST, NDVI, and NDBI layers, revealing heterogeneous 

spatial distributions characterised by pronounced thermal hotspots in densely built-up zones and cooler surfaces in areas of 

higher vegetation density. Unlike most prior NDVI–NDBI–LST studies that treat these indices separately, this study explicitly 

quantifies both their individual effects and their interaction. Simple linear regressions showed a moderate inverse relationship 

between NDVI and LST (adjusted R² = 0.253) and a positive association between NDBI and LST (adjusted R² = 0.568). 

Incorporating both indices into a multiple regression model explained approximately 57% of the variability in LST, with NDBI 

emerging as the dominant predictor. Introducing an interaction term (NDVI × NDBI) further improved model performance 

(adjusted R² = 0.579), highlighting that the cooling effect of vegetation is contingent upon surrounding built-up intensity. 

Spatial mapping underscored these findings, visually delineating areas where vegetation most effectively mitigates surface 

warming and identifying transitional zones that could benefit from targeted greening interventions. The results highlight the 

combined impact of vegetation and impervious surfaces on shaping urban thermal environments, providing critical insights for 

developing nuanced, context-specific urban heat mitigation strategies. 

Keywords – Urban Heat Island, GIS, Remote Sensing 

 

 

 

©2025 Penerbit UTM Press. All rights reserved. 

Article History: Received 8 July  2025, Accepted 27 August 2025, Published 31 August 2025 

VOL. 5, NO. 2 (August 2025) 152-167 

https://jagst.utm.my 

 

mailto:mohdradhie@utm.my


 

How to cite: Mohd Salleh, M. R., Sa’ari, R., Jamal, M. H., Alias, N. E., Abdul Rahman, M. Z., Alias, N., Yusoff, A. R., 

Azman, S. and Kasiman, E. H. (2025). Urban Heat Island Dynamics in Johor Bahru, Malaysia: Influence of Vegetation 

and Urbanization on Surface Temperature. Journal of Advanced Geospatial Science and Technology. 5(2), 153-167. 

DOI: https://doi.org.10.11113/jagst.v5n2.114 

1.0 Introduction 

Urban heat islands (UHIs) have emerged as a critical environmental concern due to their adverse 

impacts on urban ecological conditions and the overall livability of cities, especially in rapidly 

expanding tropical megacities (Estoque, Murayama, & Myint, 2017; Rizwan & Dennis, 2008). 

Characterised by elevated land surface temperatures (LST) within urbanised areas relative to 

surrounding rural regions, UHI phenomena exacerbate energy demands, impair human thermal 

comfort, and increase vulnerability to heat-related illnesses (Li, Zhou, Asrar, Imhoff, & Li, 2017; 

Santamouris, 2015). In Southeast Asia, the pace of urban expansion has been accompanied by 

significant transformations in land use, often involving the replacement of vegetated areas with 

impervious surfaces (Estoque et al., 2017). Despite this, comprehensive spatial analyses 

quantifying the relative impacts of vegetation cover and urban development on surface temperature 

patterns in these environments remain limited (Estoque et al., 2017; Zhang et al., 2021). 

Land surface temperature is fundamentally governed by the interplay of surface biophysical 

properties, notably vegetation density and the extent of built-up infrastructure (Guha, Govil, Dey, 

& Gill, 2018; Weng & Lu, 2008). Vegetation moderates surface temperatures through shading and 

evapotranspiration. In contrast, impervious surfaces, such as roads and buildings, tend to retain and 

re-radiate heat due to low albedo and high thermal capacity (Li, Schubert, Kropp, & Rybski, 2020; 

Zou, Yang, & Qiu, 2019). Remotely sensed indices provide robust proxies for these characteristics: 

the normalised difference vegetation index (NDVI) effectively captures vegetation vigour and 

density, while the normalised difference built-up index (NDBI) delineates urban structural 

intensity. Numerous studies conducted in temperate and semi-arid regions have consistently 

documented inverse relationships between NDVI and LST, alongside positive associations 

between NDBI and LST (Cetin et al., 2024; Kikon, Kumar, & Ahmed, 2023). Similar patterns are 

observed in tropical contexts. For instance, seasonal analyses in Raipur City, India, reveal strong 

inverse NDVI–LST correlations (−0.63 in the post-monsoon period) and consistent NDBI–LST 

relationships (Guha & Govil, 2020). Geographically weighted regression in Chinese cities revealed 

that NDBI explains LST variability more strongly than other indices (Xiang et al., 2023). Global 

studies further indicate that NDVI exhibits a moderate positive correlation with LST (+0.57), while 

NDBI is more negatively associated (−0.52), depending on land cover context (Rahimi, Dong, & 

Jung, 2025). Additionally, NDBI has been shown to maintain a more stable relationship with LST 

than NDVI in urban tropical areas (Guha, Govil, Taloor, Gill, & Dey, 2022). However, empirical 
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evidence from humid tropical cities remains comparatively sparse, and the unique climatic regimes, 

characterised by high baseline humidity and frequent rainfall, may alter these relationships. 

In Malaysia, empirical UHI research has frequently focused on the capital region, but 

several significant investigations in other urban settings enhance contextual relevance. Kubota and 

Ossen (2009) assessed Johor Bahru using field measurements and recorded nocturnal UHI intensity 

of approximately 4 °C, noting that open spaces functioned as cooling “islands” that interrupted 

UHI zones. In Putrajaya, Morris et al. (2015) employed mesoscale modelling and found nighttime 

UHI ranges between 1.9 °C and 3.1 °C, with an average daily intensity of about 0.79 °C. Penang’s 

Tanjong City Marina and Jetty District study, as noted by  Karsono and Wahid (2010), linked 

building materials and urban layout to localised heat accumulation. In the Cameron Highlands, 

Ibrahim, Latiff, Ismail, and Isa (2018) identified UHI formation concentrated around the city centre 

via field surveys and spatial analysis, and How, Ismail, and Muharam (2020) showed a substantial 

~2 °C increase in land surface temperature (LST) over 2009–2019 due to land-use changes. 

Johor Bahru, situated at the southern tip of Peninsular Malaysia, reflects the pressures of 

tropical urbanisation, having undergone extensive land conversion from natural and agricultural 

landscapes to residential, commercial, and industrial uses over recent decades (Kang & Kanniah, 

2022; Tew & Tan, 2020). Yet, despite these pronounced land cover shifts, localised studies 

explicitly quantifying how vegetation and urban structures interact to influence LST within the city 

are lacking. This gap restricts the capacity of urban planners and policy makers to formulate 

targeted interventions that mitigate heat accumulation and enhance urban resilience. This study 

addresses the lack of spatially explicit quantification of how vegetation cover and built-up intensity 

shape land surface temperature in a humid tropical urban setting. Without such empirical insights, 

a critical limitation remains in efforts to design and implement urban heat mitigation strategies 

tailored to the local biophysical context. The findings hold significance for guiding evidence-based 

urban planning and informing the strategic integration of green infrastructure to optimise thermal 

regulation, ultimately contributing to the formulation of more climate-resilient cities in the tropics. 
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2.0 Materials and Methods 

2.1 Study Area 

The study area encompasses Johor Bahru, the capital of Johor state, situated at the southernmost 

tip of the Malaysian Peninsula. For this analysis, a spatial extent was delineated by applying a 15 

km buffer around the city centre (approximately at 1.49°N, 103.75°E), effectively capturing Johor 

Bahru and its surrounding peri-urban zones (Figure 1). This region lies between latitudes 1.45°N 

and 1.60°N, and longitudes 103.60°E and 103.80°E. It is characterised by a humid equatorial 

climate, with mean annual temperatures typically ranging from 27°C to 28°C and average yearly 

rainfall exceeding 2,000 mm. Over the past two decades, Johor Bahru has undergone substantial 

urban expansion, converting extensive areas of vegetated and agricultural land into residential, 

commercial, and industrial uses. These dynamics make it a representative setting for investigating 

the interactions among vegetation cover, built-up intensity, and land surface temperature within a 

rapidly urbanising tropical environment. 

 

 

Figure 1: Map of study area 
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2.2 Data Sources and Method 

2.2.1 Satellite Imageries 

This study employed multi-year Landsat 8 Operational Land Imager (OLI) and Thermal Infrared 

Sensor (TIRS) imagery accessed via the Google Earth Engine platform. Images were filtered for 

cloud cover (<30%) over the Johor Bahru region and composited across multiple years to ensure 

robust spatial coverage. Spectral bands were pre-processed by applying radiometric calibration and 

atmospheric correction coefficients provided in the Landsat Collection 2 Level-2 data. 

 

2.2.2 Derivation of NDVI, NDBI, and LST 

In this study, Landsat 8 OLI and TIRS imagery were utilised to derive the key indices required to 

assess the influence of vegetation cover and urbanisation on LST in Johor Bahru, Malaysia. The 

workflow involved calculating NDVI and NDBI from the OLI spectral bands and retrieving LST 

estimates from the TIRS thermal data. All image processing and index derivations were performed 

in Google Earth Engine, while spatial analyses and mapping were conducted using ArcGIS Pro. 

The NDVI was computed to characterise vegetation cover, employing the standard 

formulation as in equation (1): 

𝑁𝐷𝑉𝐼 =  
(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝑅𝐸𝐷)
                                           (1) 

 

where NIR refers to Band 5 (0.85–0.88 µm) and RED to Band 4 (0.64–0.67 µm) of Landsat 8 OLI, 

values closer to +1 indicate dense vegetation. In contrast, values near zero or negative typically 

represent built-up areas or water bodies. 

The NDBI was calculated to quantify built-up intensity, using equation (2): 

𝑁𝐷𝐵𝐼 =  
(𝑆𝑊𝐼𝑅 − 𝑁𝐼𝑅)

(𝑆𝑊𝐼𝑅 + 𝑁𝐼𝑅)
                                        (2) 

 

where SWIR denotes Band 6 (1.57–1.65 µm) and NIR again corresponds to Band 5. Higher NDBI 

values are associated with impervious surfaces, facilitating the identification of urbanised zones. 

 LST was retrieved from the Landsat 8 OLI and TIRS Collection 2 Level-2 dataset, which 

provides atmospherically corrected surface temperature estimates as part of its standardised 

products. Specifically, the thermal band (Band 10) was employed, representing surface temperature 

values stored as scaled digital numbers. Following the USGS Collection 2 specifications, these 
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were converted to absolute temperature in Kelvin using the radiometric rescaling factors provided 

in the metadata (Speiser & Largier, 2024; Thammaboribal, Triapthti, & Lipiloet, 2025): 

𝐿𝑆𝑇(𝐾) =  𝑄𝑐𝑎𝑙 𝑥 𝑀𝐿 + 𝐴𝐿                                       (3)           

 

where Qcal is the pixel value of Band 10, ML=0.00341802 is the multiplicative scaling factor, and 

AL=149.0 is the additive offset. This formulation yields LST values that are already corrected for 

atmospheric effects and surface emissivity, based on an operational split-window algorithm applied 

by the USGS. 

 

2.3 Sampling and Statistical Analysis 

To quantify the relationships between LST, vegetation cover, and built-up intensity, a random 

sampling approach was employed on the composite dataset of NDVI, NDBI, and LST across the 

study area. This approach ensures an unbiased representation of spatial heterogeneity and allows 

efficient statistical modelling while managing computational demands. Such pixel-level sampling 

and regression analyses are consistent with methodologies widely adopted in urban thermal studies 

to elucidate the influence of land cover characteristics on surface temperatures ( Li et al., 2017; 

Weng, 2009). Sampling was performed using Google Earth Engine’s sample function, which 

efficiently extracts attribute values without retaining geometric information, thereby optimising the 

dataset for subsequent statistical analysis. This sampling approach, which retrieves attribute values 

without retaining geometry, is consistent with established practices in urban thermal remote 

sensing studies that utilise pixel-wise data extraction to quantify statistical relationships among 

land surface temperature, vegetation cover, and built-up intensity (Mudele & Gamba, 2019; Tran, 

Uchihama, Ochi, & Yasuoka, 2006). The resulting dataset formed the basis for subsequent 

correlation and regression analyses to examine the influence of vegetation and impervious surfaces 

on urban thermal patterns. 

By employing a sufficiently large and spatially distributed sample size, the methodology 

ensured robust capture of variability in surface temperature, vegetation density, and built-up 

characteristics across different urban morphologies. This dataset formed the basis for simple and 

multiple regression analyses, enabling quantification of the influence of vegetation and impervious 

surfaces on urban thermal patterns. 
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3.0 Results and Analysis 

3.1 Spatial Mapping of LST, NDVI, and NDBI 

To complement the regression analysis and provide spatial context to the observed statistical 

relationships, thematic maps of LST, NDVI, and NDBI were produced (Figure 2). 

 

  
(a)                                                                          (b) 

  
(c) 

Figure 2: Spatial distribution maps over the study area derived from 30-m resolution Landsat 8 

imagery: (a) Land Surface Temperature (LST) in Kelvin (K), (b) Normalised Difference 

Vegetation Index (NDVI), and (c) Normalised Difference Built-up Index (NDBI). 

 

These maps reveal clear spatial heterogeneity, with surface temperatures closely tied to 

variations in land cover. Areas with high NDBI values, indicating dense built-up surfaces, 

correspond to distinct thermal hotspots, while regions with higher NDVI show cooler temperatures, 

underscoring the moderating effect of vegetation identified in the models. Transitional zones along 
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the urban fringe, marked by intermediate NDVI and NDBI levels, indicate areas where targeted 

greening could help mitigate localised heat accumulation. Taken together, these spatial patterns 

and statistical findings offer a more integrated understanding of how vegetation and urban 

development jointly influence thermal conditions across the study area. 

 

3.2 Descriptive Statistics and Correlation Analysis 

Descriptive statistics presented in Table 1 summarise the distributions of NDVI, NDBI, and LST 

across the study area. NDVI values ranged from -0.41 to 0.92 (mean = 0.52, SD = 0.25), indicating 

a heterogeneous landscape comprising both densely vegetated patches and sparsely vegetated or 

impervious zones. 

NDBI values were predominantly negative, spanning -0.66 to 0.20 (mean = -0.15, SD = 

0.19), reflecting the dominance of low to moderate built-up intensity across the region. Meanwhile, 

LST varied from 304.3 K to 324.2 K (mean = 313.2 K, SD = 4.3 K), which is characteristic of 

urban thermal conditions in tropical environments. The correlation matrix in Table 1 further shows 

the interrelationships among these variables. A moderate negative correlation was observed 

between NDVI and LST (r = -0.50), suggesting that areas with greater vegetation cover tended to 

exhibit lower surface temperatures. Conversely, NDBI demonstrated a strong positive association 

with LST (r = 0.75), underscoring the pronounced warming effect of built-up surfaces. 

Additionally, NDVI and NDBI were inversely correlated (r = -0.70), consistent with the expected 

spatial trade-off between vegetative and impervious land cover types in urban settings. 

 

Table 1. Descriptive statistics and Pearson correlation coefficients (r) for NDVI, NDBI, and LST 

(K), with n = 500 

Variable Mean SD Min Max 
Corr. with 

NDVI 

Corr. with 

NDBI 

Corr. with 

LST 

NDVI 0.52 0.25 -0.41 0.92 1.00 -0.70 -0.50 

NDBI -0.15 0.19 -0.66 0.20 -0.70 1.00 0.75 

LST 313.2 4.30 304.3 324.2 -0.50 0.75 1.00 

 

 These findings align with broader regional and global studies. For example, Zhou et al. 

(2016) documented similar patterns across 32 major Chinese cities, reporting inverse correlations 

between NDVI and urban heat island (UHI) intensity (r ≈ -0.62) and positive correlations between 
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impervious surfaces and UHI (r ≈ 0.66). In a tropical context, Buyadi, Mohd, and Misni (2013) 

found that extensive vegetation loss (~68% reduction over three decades) in Kuala Lumpur was 

accompanied by an increase in mean LST from 22.9°C to 26.2°C. Despite relatively modest 

coefficients of determination (R² ≈ 0.08–0.10), their analyses revealed statistically significant 

inverse relationships between NDVI and LST (p < 0.05). Moreover, these patterns are consistent 

with the foundational synthesis by Voogt and Oke (2003), who emphasised that LST derived from 

thermal remote sensing is highly responsive to variations in vegetation and built-up surfaces, 

typically exhibiting inverse relationships with NDVI and positive associations with impervious 

area metrics. Collectively, these parallels underscore the suitability of NDVI and NDBI as 

explanatory indicators for assessing spatial variability in urban thermal environments. 

 

3.3 Simple Linear Regression Models 

Simple linear regression models were first employed to quantify the independent influences of 

vegetation cover (NDVI) and built-up intensity (NDBI) on LST. According to Table 2 and Figure 

3, when NDVI was used as the sole predictor, the model yielded an adjusted R² of 0.253 (p < 

0.001), indicating that NDVI alone accounted for roughly 25% of the spatial variability in LST. 

The negative regression coefficient (-8.80, p < 0.001) suggests that a one-unit increase in NDVI is 

associated with an estimated decrease of 8.8 K in LST, underscoring the crucial cooling effect of 

vegetation in urban settings. 

In contrast, the model incorporating NDBI as the sole predictor exhibited substantially 

greater explanatory power, achieving an adjusted R² of 0.568 (p < 0.001). The positive coefficient 

(17.46, p < 0.001) indicates that each unit increase in NDBI corresponds to an approximate 17.5 K 

rise in LST, highlighting the pronounced warming impact of impervious surfaces. Together, these 

results reinforce the bivariate correlations observed earlier, emphasising the dominant role of built-

up areas in elevating surface temperatures while also demonstrating the mitigating influence of 

vegetation when considered independently. 
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(a)                                                                    (b) 

Figure 3: Relationships between land surface temperature (LST) and (a) normalised difference 

vegetation index (NDVI) and (b) normalised difference built-up index (NDBI) 

 

Table 2: Summary of linear regression results examining the relationships between vegetation 

cover (NDVI) and built-up intensity (NDBI) with land surface temperature (LST) in Johor Bahru. 

Metric NDVI vs LST NDBI vs LST 

Adjusted R² 0.253 0.568 

F-statistic (p-value) 154.2 (<0.001) 595.3 (<0.001) 

AIC 2477 2229 

BIC 2485 2237 

Durbin-Watson 2.064 1.998 

Constant Coef. (SE) 317.78 (0.41)*** 315.85 (0.17)*** 

NDVI Coef. (SE) -8.80 (0.71)*** - 

NDBI Coef. (SE) - 17.46 (0.72)*** 

t-value -12.42 24.40 

p-value <0.001 <0.001 

95% CI [-10.19, -7.40] [16.05, 18.86] 

Jarque-Bera p <0.001 0.145 

Skew / Kurtosis -0.49 / 4.06 0.05 / 3.44 
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3.4 Multiple Regression Analysis 

Building on the simple regressions, multiple regression analyses were performed to evaluate the 

combined and interactive influences of NDVI and NDBI on LST. The initial additive model, 

incorporating both NDVI and NDBI as independent predictors, accounted for approximately 57% 

of the variance in LST (adjusted R² = 0.568, p < 0.001). In this framework, NDBI emerged as a 

strong and statistically significant driver of LST (β = 18.28, p < 0.001), whereas NDVI no longer 

exhibited a significant independent effect (β = 0.88, p = 0.245) after controlling for built-up 

intensity. Variance inflation factors (VIF ≈ 1.98) indicated low multicollinearity, supporting the 

robustness of these estimates. 

To assess whether the cooling influence of vegetation varies with urban intensity, an 

interaction term (NDVI × NDBI) was introduced, as shown in Table 3. Including this term 

modestly improved model fit (adjusted R² = 0.579, p < 0.001) and revealed significant effects for 

all predictors. The positive interaction coefficient (β = 11.57, p < 0.001) suggests that NDVI’s 

impact on LST is contingent upon NDBI, indicating a compounded relationship where the 

temperature-moderating role of vegetation is moderated by surrounding impervious surfaces. 

Diagnostic checks, including Durbin-Watson statistics near 2.0 and non-significant Jarque-Bera p-

values, revealed no significant concerns regarding autocorrelation or residual normality. 

Collectively, these findings underscore the necessity of accounting for interactive effects in urban 

thermal studies, demonstrating that while vegetation generally mitigates surface temperatures, its 

effectiveness is markedly influenced by the extent of built-up cover. 

 

Table 3: Comparison of multiple regression models predicting land surface temperature (LST) 

using NDVI, NDBI, and their interaction 

Model Adj. R² 
NDVI 

Coef. (p) 

NDBI Coef. 

(p) 

NDVI×NDBI Coef. 

(p) 
AIC BIC 

NDVI + 

NDBI 
0.568 

0.88 

(0.245) 

18.28 

(<0.001) 
— 2230 2242 

NDVI + 

NDBI + 

NDVI×NDBI 

0.579 
4.17 

(0.001) 

13.69 

(<0.001) 
11.57 (<0.001) 2219 2236 

 



 

162 

The interaction surface shown in Figure 4 further illustrates these dynamics by mapping 

predicted LST across varying combinations of NDVI and NDBI. The plot reveals that LST 

increases sharply with rising NDBI across all levels of NDVI, underscoring the dominant warming 

role of impervious surfaces. Meanwhile, the cooling influence of NDVI is most pronounced in 

areas with low built-up intensity; here, higher vegetation cover is associated with substantial 

reductions in LST. However, this mitigating effect diminishes considerably in highly urbanised 

zones, where even significant increases in NDVI result in only modest temperature decreases. 

These patterns emphasise that the capacity of vegetation to offset urban heat is not uniform but 

strongly influenced by the surrounding built environment. 

 

 

Figure 4: Interaction surface illustrating the combined effects of NDVI and NDBI on predicted 

LST based on the multiple regression model with an interaction term 

 

4.0 Discussion 

The results confirm that vegetation exerts a strong cooling influence on surface temperatures. 

NDVI was negatively correlated with LST (r = –0.50), and regression analysis revealed that a one-

unit increase in NDVI corresponded to an estimated 8.8 K reduction in LST. This outcome is 

consistent with earlier findings in Kuala Lumpur (Buyadi et al., 2013) and global syntheses by 

Voogt and Oke (2003), which emphasise the role of vegetation in reducing urban heat through 

shading and evapotranspiration. However, in multiple regression models, the independent effect of 
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NDVI was diminished once NDBI was considered, suggesting that vegetation’s cooling capacity 

is strongly conditioned by the surrounding built environment. 

 Built-up intensity emerged as the dominant driver of elevated LST. NDBI showed a strong 

positive correlation with LST (r = 0.75), and regression models indicated a 17.5 K rise in LST for 

each unit increase in NDBI. This effect was more than twice the magnitude of the vegetation’s 

cooling influence. These results align with those of Zhou et al. (2016), who reported comparable 

associations between impervious cover and urban heat island intensity in major Chinese cities. In 

the tropical context of Johor Bahru, the thermal effects of impervious materials are amplified by 

persistent solar loading and high humidity. 

 The inclusion of an NDVI × NDBI interaction term improved model performance (adjusted 

R² = 0.579), revealing that vegetation’s cooling benefits are contingent on urban density. In less 

urbanised zones, higher NDVI corresponded to substantial reductions in LST, while in dense built-

up areas, the cooling effect diminished considerably. This interaction highlights the contextual 

nature of urban heat mitigation: greening is most effective in low- to medium-density areas but less 

impactful in compact urban cores dominated by impervious surfaces. 

 The findings carry practical implications for climate-sensitive urban design. At the urban 

fringe, expanding vegetation cover can substantially reduce localised heat accumulation. In dense 

city centres, however, mitigation requires complementary strategies, such as reflective or 

permeable materials, vertical greening, or improved urban ventilation. A balanced approach that 

integrates both increased vegetation and modifications to built-up surfaces is therefore essential for 

managing thermal stress in tropical cities. In summary, the study confirms the opposing roles of 

vegetation and impervious cover in shaping urban thermal environments and demonstrates that 

their effects are not independent but interactive. While greening is effective in reducing LST, its 

efficacy is significantly influenced by the intensity of built-up areas. Urban heat mitigation in 

tropical cities thus requires integrated planning that couples green infrastructure with strategies to 

reduce the thermal burden of impervious surfaces. 

 

5.0 Conclusion 

This study highlights how vegetation cover and built-up intensity jointly shape the spatial 

variability of land surface temperature in Johor Bahru, a rapidly urbanising tropical city. While 

vegetation contributes to cooling through evapotranspiration and shading, the dominant warming 
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effect of impervious surfaces often overshadows this influence, particularly in dense urban cores. 

The interaction between NDVI and NDBI underscores that vegetation’s cooling benefit is not 

uniform but contingent on the extent of surrounding built-up development. From a planning 

perspective, these findings emphasise the need for integrative urban heat mitigation strategies. 

Expanding vegetation cover remains critical, especially along urban fringes and in low- to medium-

density zones, where cooling benefits are most pronounced. However, in compact urban centres, 

effective heat reduction will require complementary measures, including reflective or permeable 

materials, vertical greening, and improved ventilation corridors. Urban design policies that balance 

green infrastructure with thoughtful control of impervious surface expansion are essential for 

creating thermally resilient tropical cities. 

Future research should build on this analysis by incorporating higher-resolution datasets 

and additional variables such as albedo, building morphology, and soil moisture, as well as 

examining seasonal and long-term trends. Such work would enable more precise modelling of 

urban thermal dynamics and support adaptive planning in response to climate change. In 

conclusion, the study demonstrates that mitigating urban heat in tropical environments demands 

not only enhancing green infrastructure but also strategically managing urban form and land use 

patterns. Tailored, context-specific interventions are therefore crucial to ensure sustainable and 

climate-resilient urban development in rapidly transforming regions like Johor Bahru. 
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