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Abstract – Urbanisation profoundly alters land-use and land-cover (LULC) patterns, often intensifying urban heat island 

(UHI) effects and threatening sustainable development. In rapidly growing semi-arid cities such as Kano Metropolis, 

Nigeria, these dynamics remain underexplored. This study investigates the relationship between LULC transitions and 

urban thermal dynamics over nearly four decades (1984 - 2023), while also forecasting future changes. Multi-temporal 

Landsat imagery was classified using the Classification and Regression Tree (CART) algorithm, achieving overall 

accuracies ranging from 92.1% to 98.5% and Kappa coefficients exceeding 0.85. Vegetation and built-up indices, including 

the Normalised Difference Vegetation Index (NDVI) and Normalised Difference Built-up Index (NDBI), were analysed 

alongside Land Surface Temperature (LST) to assess urban heat patterns. Predictive modelling employed the Cellular 

Automata Artificial Neural Network (CA-ANN) approach, which was validated with an overall accuracy of 92% and a 

Kappa coefficient of 0.86. Results show that built-up areas expanded from 43.06 km² (2.93%) in 1984 to 381.79 km² 

(25.95%) in 2023, an almost 800% increase, while bare land declined by 23.2%. Mean LST rose from 39.7°C in 1984 to 

41.5°C in 2023, with peak values exceeding 52°C in 2010. A strong positive correlation was found between NDBI and 

LST (r = 0.57), while NDVI showed a negative correlation with LST (r = -0.32), highlighting the cooling effect of 

vegetation. Model simulations predict continued urban expansion through 2050, with built-up areas increasing by 6.5% 

and further intensification of UHI effects if unchecked. These findings emphasise the urgent need for sustainable urban 

planning, including the preservation of vegetation cover, the development of green infrastructure, and climate-sensitive 

construction practices. The study offers critical insights for policymakers and urban planners seeking to mitigate thermal 

stress and foster climate-resilient urban development in sub-Saharan Africa. 
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1.0 Introduction 

The rapid expansion of urban areas has significantly influenced environmental patterns 

globally. Urbanisation often replaces natural landscapes with built environments, resulting in 

considerable ecological and climatic effects. A key outcome of this transformation is the urban 

heat island (UHI) effect, whereby urban areas experience higher temperatures than surrounding 

rural regions due to the replacement of vegetation and permeable surfaces with impervious 

materials such as buildings, roads, and pavements. These land-use and land-cover (LULC) 

changes not only affect local climates but also exacerbate broader environmental challenges, 

including increased energy demand and health risks associated with higher temperatures. 

Understanding how LULC changes influence urban thermal dynamics is essential for 

addressing these issues and fostering sustainable urban development in rapidly growing cities 

(Feng et al., 2024; Kassomenos & Begou, 2022; Liu et al., 2020). The intensification of the 

UHI effect has been associated with rising land surface temperatures (LST), elevated energy 

consumption, and increased public health risks, particularly in cities with rapid infrastructure 

growth and dense populations. In regions with accelerated urbanisation, such as South and 

Southeast Asia, Latin America, and Africa, balancing economic development with 

environmental sustainability has become an urgent priority. Research shows that urban centres 

in these regions face the dual challenge of supporting population growth while minimising the 

adverse impacts of urbanisation on climate and health (Hsu & Rodríguez, 2024; Fang et al., 

2024; Nieuwenhuijsen, 2016). Consequently, sustainable urban planning has gained significant 

attention as a strategy to promote growth while maintaining ecological integrity and enhancing 

climate resilience, especially in regions vulnerable to UHI intensification. 

In sub-Saharan Africa, this challenge is especially acute. Urban centres are expanding 

at unprecedented rates; however, research on the thermal consequences of these land-use and 

land-cover (LULC) changes remains limited. Many existing studies focus on tropical or 

temperate regions, overlooking the distinct dynamics of semi-arid environments, where sparse 

vegetation, soil type, and climatic variability influence heat patterns in different ways. This 

lack of localised evidence makes it difficult for policymakers to anticipate and manage the 

ecological and health implications of urban growth in African cities. In Nigeria, the relationship 

between LULC changes and urban thermal patterns is particularly relevant due to the country’s 

rapid urbanisation and substantial population growth. Kano Metropolis, one of Nigeria’s 

largest and most densely populated cities, exemplifies these dynamics. With over five million 

residents, Kano has undergone significant LULC changes in recent decades, driven by 

demographic pressures and economic activities. These transformations have replaced vast 
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areas of natural vegetation and bare land with built environments, raising concerns about the 

UHI effect and its potential long-term implications for public health, energy use, and overall 

urban livability (A et al., 2017a; Emmanuel Ayila, 2014). Despite the importance of this issue, 

research on UHI effects in sub-Saharan Africa is limited, and the specific interactions between 

LULC transitions and urban thermal patterns in rapidly urbanising cities, such as Kano, are not 

well understood. This study aims to address these gaps by providing data-driven insights to 

inform sustainable urban planning practices tailored to the region’s unique environmental and 

urbanisation trends. 

While many studies have examined the UHI effect and LULC changes in cities 

worldwide, substantial gaps remain in understanding these relationships in semi-arid, rapidly 

urbanising regions of sub-Saharan Africa. Most existing research has focused on urban heat 

and land-use changes in developed or tropical cities, often overlooking semi-arid environments 

where different vegetation densities, soil types, and climate patterns affect thermal dynamics 

(Chakraborty & Lee, 2019; García-Chan et al., 2023; Moazzam et al., 2024). In Kano 

Metropolis, the rapid conversion of bare land and vegetation into built-up areas provides a 

distinct context for studying UHI effects. This transformation has altered the local 

microclimate, resulting in temperature increases that could impact public health, urban 

livability, and sustainability. However, limited data and predictive modelling in such contexts 

pose challenges for policymakers in forecasting and addressing the environmental impacts of 

urban expansion in semi-arid climates (Sajadzadeh & Ghorbanileylestani, 2024). Another 

critical research gap lies in the lack of predictive modelling for future LULC changes and their 

associated UHI impacts in semi-arid regions like Kano. Although urban heat studies often 

employ predictive tools to model UHI intensification in tropical and temperate zones, few 

studies apply these methods to sub-Saharan African cities, depriving decision-makers of 

essential insights for managing thermal and ecological stressors. This study aims to fill this gap 

by utilising remote sensing and advanced predictive modelling to analyse UHI and LULC 

changes in Kano, providing valuable information for urban planners and policymakers. 

Recent work continues to clarify how land-use/land-cover (LULC) change influences 

surface urban heat island (SUHI) patterns through the loss of vegetation and expansion of 

impervious cover. Global and regional syntheses show the now-familiar signal: NDVI 

correlates negatively with LST, while NDBI shows a positive association, with implications 

for planning and heat-risk management. New analyses also emphasise modelling choices (e.g., 

OLS vs. GWR) and sensor/orbit trade-offs when interpreting SUHI dynamics, reinforcing the 

need for locally validated approaches in rapidly urbanising regions (Cetin et al., 2024; Eshetie, 
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2024). Evidence from semi-arid African cities has grown, though it remains thinner than for 

temperate settings. Studies in Kano, Nigeria, and Kaduna, Nigeria, report intensified SUHI 

linked to the conversion of bare/vegetated land to built-up areas, with NDVI-LST cooling and 

NDBI-LST warming relationships consistent with the broader literature. Parallel work in 

Ethiopia (Addis Ababa; multi-decadal Landsat series) and northern Ghana (Tamale) similarly 

attributes rising LST to urban expansion and declining vegetation cover, underscoring common 

mechanisms across the Sahel-to-Sudan belt despite local morphological differences (Sensing 

et al., 2024; Usman et al., 2025; Yiran et al., 2025). In predictive LULC modelling, recent 

studies have increasingly adopted Cellular Automata–Artificial Neural Network (CA-ANN) 

frameworks, often implemented via MOLUSCE in QGIS, to simulate transition potentials and 

forecast urban growth. These models, validated against observed changes, perform well in 

anticipating near-term expansion fronts and testing mitigation scenarios (e.g., green 

infrastructure retention). The recent literature shows CA-ANN’s portability across contexts and 

its value for policy-relevant “what-if” analyses when paired with robust accuracy assessment 

(Ong’ondo et al., 2025). Methodologically, this study’s LST retrieval and UHI interpretation 

align with established foundations. Landmark reviews explain how thermal remote sensing 

resolves urban surface processes and why SUHI reflects urban–rural energy-balance 

differences. For Landsat-based LST, classic single-channel formulations (Qin et al., 2001; 

Sobrino et al., 2004) and newer practical refinements provide the theoretical and empirical 

basis for converting radiance/brightness temperature to LST. Meanwhile, the USGS 

Collection-2 documentation details scale factors and K1/K2 conversions for Level-1 and Level-

2 products. For comparability across urban forms, the Local Climate Zones (LCZ) framework 

remains the standard for classifying morphology and contextualising SUHI intensity (Qin et al. 

2001; Voogt and Oke 2003). 

This study aims to bridge existing research gaps by investigating the relationship 

between LULC changes and urban thermal patterns in Kano Metropolis over 39 years (1984–

2023) through remote sensing data and predictive modelling. The study’s primary objectives 

are as follows: Assess LULC Changes: Quantify LULC changes in Kano Metropolis from 1984 

to 2023, focusing on the conversion of bare land and vegetation into built-up areas and 

analysing the spatial and temporal distribution of these changes. Analyse Urban Thermal 

Patterns: Identify spatial and temporal trends in land surface temperature (LST) and correlate 

these trends with LULC changes, highlighting regions with increased UHI effects and 

examining associations with demographic and economic factors. Evaluate Thermal and 

Vegetative Indices: Investigate the relationship between LST trends and spectral indices such 
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as the Normalised Difference Built-up Index (NDBI) and Normalised Difference Vegetation 

Index (NDVI) to understand how vegetation and built-up areas affect urban thermal dynamics 

(Guha et al., 2020). Predict Future LULC and UHI Trends: Forecast future LULC changes and 

their potential impact on urban heat patterns through 2050 using Cellular Automata-Artificial 

Neural Networks (CA-ANN) modelling to inform sustainable urban planning practices. 

Provide Sustainable Planning Recommendations: Offer recommendations for sustainable 

urban development in Kano Metropolis, emphasising the role of green spaces, sustainable 

construction practices, and climate adaptation measures to improve urban livability and 

resilience. Through these objectives, this research aims to enhance the understanding of UHI 

effects in semi-arid, rapidly urbanising regions and provide essential insights to support 

sustainable development strategies in Kano and similar urban centres across sub-Saharan 

Africa. 

 

1.1 Study Area 

The study was conducted in Kano Metropolis, the capital of Kano State in northwestern 

Nigeria. Situated between latitudes 11° 25’N and 12° 47’N and longitudes 8° 22’E and 8° 39’E, 

Kano is one of the largest commercial cities in Nigeria. Covering approximately 5,700 square 

kilometres, it encompasses eight Local Government Areas (LGAs): Kano Municipal, Gwale, 

Dala, Fagge, Tarauni, Nassarawa, and Ungogo (A et al., 2017b; Emmanuel Ayila, 2014), as 

shown in Figure 1. Historically, Kano has been a significant commercial hub since pre-colonial 

times and remains crucial to the regional economy (Mustapha et al., 2014). With a population 

exceeding five million, it is the country’s second-largest city. Kano’s climate is classified as 

tropical wet and dry (Aw) under the Köppen climate classification system, characterised by 

high temperatures throughout the year, often exceeding 43°C during the hot, dry season. The 

region experiences three distinct climatic seasons: a cool dry season from November to 

February, a hot dry season from March to mid-May, and a wet season from June to October 

(Aliyu, 2008; Tanko et al., 2017). Kano’s geographical location, climatic conditions, and rapid 

urbanisation make it an ideal case for studying the effects of land-use and land-cover changes 

on urban thermal patterns. 
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Figure 1: Map of the study area 

 

2.0 Materials and Methods 

2.1 Data Collection 

The study utilised multi-temporal satellite imagery from Landsat 4, 5, 7, and 9 obtained from 

the Landsat Collection 2 dataset, spanning the period from 1984 to 2023. Cloud-free images 

between March and May, during the dry season, were selected to minimise cloud interference 

and ensure clear visibility of land-cover changes. These years were chosen to represent key 

stages in Kano’s urban expansion: the early pre-urbanisation period (1984), the onset of rapid 

growth (2000), accelerated expansion (2010), and the most recent condition (2023). 

 

2.2 Sensors and Bands Used 

Landsat 4–5 TM and Landsat 7 ETM+: Multispectral bands (Blue, Green, Red, NIR, SWIR1, 

SWIR2) at 30 m resolution; Thermal Band 6 at 120 m (resampled to 30 m). Landsat 9 

OLI/TIRS: Multispectral bands at 30 m; Thermal Bands 10 and 11 at 100 m (resampled to 30 

m). Indices Computed: Normalised Difference Vegetation Index (NDVI), Normalised 

Difference Built-up Index (NDBI), and Urban Thermal Field Variance Index (UTFVI). These 

were chosen because of their proven sensitivity to vegetation, impervious surfaces, and 

ecological stress in semi-arid cities. 
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2.3 Data Pre-processing: Image Correction and Calibration 

All images were pre-processed on Google Earth Engine (GEE), including radiometric 

calibration, atmospheric correction, and cloud masking using the QA band, with the following 

steps: 

• Atmospheric Correction: Landsat surface reflectance data were used, incorporating 

corrections for atmospheric distortions to ensure accurate radiance and reflectance 

values. 

• Geometric Correction: All images were co-registered to a uniform coordinate system 

(WGS84/UTM Zone 32N) to maintain spatial accuracy across the entire dataset. 

• Cloud Masking: The ‘CLOUD QA’ band from the Landsat Collection 2 dataset was 

utilised to mask clouds and cloud shadows, ensuring that only cloud-free pixels were 

included in the analysis (Kafy et al., 2020; Orieschnig et al., 2021). 

 

2.4 Land-use and Land-cover (LULC) Classification: Classification and Regression Tree 

(CART) Algorithm 

The Classification and Regression Tree (CART) algorithm was employed to classify the 

Landsat imagery into distinct land-use and land-cover (LULC) categories. CART is a decision 

tree algorithm that recursively splits the dataset based on Gini Impurity, generating nodes that 

optimally separate the classes (see Equation 1). This approach ensures accurate classification 

of various LULC types across the entire study period. LULC classification was performed 

using the Classification and Regression Tree (CART) algorithm. 

 

Classes Defined 

Built-up Areas: – residential, commercial, and industrial structures with impervious surfaces. 

Vegetation: – agricultural fields, grasslands, and sparse shrubs. 

Bare Land: – exposed soil, sand, and degraded surfaces with minimal vegetation. 

Water Bodies: – rivers, ponds, and reservoirs. 

 

Variables in CART Equations: The splitting function used Gini Impurity, where: 

 

Gini Impurity = 1 − ∑
p
i

2n

i=1
       (1) 

Where 
p
i
 represents the probability of each class (Kafy et al., 2021) 
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The following steps were undertaken: 

• Training Data Collection: Training samples were gathered using a stratified random 

sampling method for each land-cover class (e.g., built-up area, vegetation, bare land, 

and water). Ground truth data from field surveys and historical records were used to 

validate the classification. Training samples for each class were collected using 

stratified random sampling, which combined historical high-resolution imagery with 

ground truth points gathered during field surveys conducted in 2022–2023. 

Approximately 300 reference points were used per class. 

• Model Training: The CART algorithm was trained on 80% of the labelled dataset, 

using spectral bands (e.g., NIR, SWIR) and indices (e.g., NDVI, NDBI) as input 

features. 

• Validation: The remaining 20% of the dataset was used for validation. Classification 

accuracy was assessed through a confusion matrix, and both overall accuracy and the 

Kappa coefficient were calculated to ensure robustness. The overall accuracy exceeded 

90% for all classified years (1984, 2000, 2010, and 2023). 

• Features Used in Classification: Spectral bands (Red, NIR, SWIR1, SWIR2), NDVI, 

and NDBI were employed as predictor variables to improve class separability, 

especially between vegetation and built-up areas. 

 

2.5 Calculation of Indices 

To assess urban thermal patterns and land-cover changes, the Normalised Difference 

Vegetation Index (NDVI) was computed using the following formula, Equation 2: 

 

NDVI =  
(NIR−R)

(NIR+R)
          (2) 

 

The NDVI was used to evaluate vegetation health and density, where higher NDVI 

values represent denser vegetation. NDVI played a key role in assessing the cooling effect of 

vegetation on urban heat (Alademomi et al., 2020; Guha et al., 2020; Malik et al., 2019; 

Marzban et al., 2018). 

The Normalised Difference Built-up Index (NDBI) was calculated to map built-up 

areas, using the following formula in equation 3: 

 

NDBI =  
(SWIR−NIR)

(SWIR+NIR)
         (3) 
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Where: 

• SWIR represents the reflectance in the shortwave infrared band, and 

• NIR represents the reflectance in the near-infrared band. 

 

NDBI was crucial for identifying impervious surfaces, such as buildings and roads, 

which contribute to heat absorption and exacerbate urban heat island (UHI) effects 

(Tesfamariam et al., 2023). 

The Urban Thermal Field Variance Index (UTFVI) quantifies the relationship between 

land surface temperature (LST) and urban heat island (UHI) intensity, providing insights into 

the ecological impacts of urbanisation. The UTFVI is calculated using the following formula 

in equation 4: 

 

UTFVI =  
Ts− Tm

Ts
         (4) 

 

Where Ts In the formula for the UTFVI, Ts  represents the land surface temperature 

(LST), and Tm is the mean LST of the area. Higher UTFVI values indicate stronger urban heat 

island (UHI) effects and more stressed urban environments. Thresholds are applied to classify 

urban areas into different ecological states based on thermal conditions (Kafy et al., 2021). The 

UTFVI quantifies the UHI effect and categorises urban areas into thermal stress zones, as 

shown in Table 1, providing insights into the environmental health of the urban ecosystem. 

 

Table 1: UTFVI and ecological evaluation index thresholds (Faisal et al., 2021; Kafy et al., 

2021) 

Urban thermal field 

variation index 

Urban heat island 

phenomenon 

Ecological evaluation 

index 

< 0 None Excellent 

0.000 – 0.005 Weak Good 

0.005 – 0.010 Middle Normal 

0.010 – 0.015 Strong Bad 

0.015 – 0.020 Stronger Worse 

>0.020 Strongest Worst 
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These thresholds help evaluate the severity of thermal stress in urban environments, 

enabling urban planners to identify areas that require ecological interventions. 

 

2.6 Land Surface Temperature (LST) Calculation 

The Land Surface Temperature (LST) was derived from the thermal bands of Landsat imagery 

through several steps. The Digital Number (DN) values from Band 6 were first converted into 

radiance using the following equation 5: 

 

L =  
( Lmax− Lmin )

Qmax
  × ( DN −  Qmin) +  Lmin      (5) 

 

Where Lmax −  Lmin  and Qmax are sensor-specific calibration constants. (Faisal et al., 

2021; Fatemi & Narangifard, 2019; Ramaiah et al., 2020). 

The radiance was then converted to temperature in Kelvin using equation 6: 

 

Conversion to Brightness Temperature (Kelvin): 

Tk =  
K1

1n (
K2

RTM6
+1)

         (6) 

 

Where K1=1260.56K1=1260.56 and K2=607.66K2=607.66. The temperature was 

further converted to Celsius using equation 7: 

 

T∝  =  Tk  −  273         (7) 

 

This approach was adapted for Landsat 9, using specific constants for its sensors (Koko 

et al., 2022a; Tesfamariam et al., 2023). 

 

2.7 Predictive Modelling for Future LULC Changes 

The Cellular Automata–Artificial Neural Network (CA-ANN) modelling approach was 

employed to simulate and predict future land-use and land-cover (LULC) changes up to 2033 

and 2050. This approach was chosen for its ability to accurately simulate spatial-temporal 

changes by incorporating both historical land-use data and topographical features. Software 

and Plugin: Implemented in QGIS 3.28 (Firenze) using the MOLUSCE (Modules for Land Use 

Change Evaluation) plugin, version 4.0. 
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• Input Data: Historical LULC maps from 2000, 2010, and 2023 were used as input 

layers, along with geophysical variables such as slope, elevation, and population 

density. 

• Model Training and Calibration: The CA-ANN model was trained using the 

MOLUSCE plugin in QGIS. The model predicted transition probabilities between 

LULC classes based on historical data and environmental factors. The model’s 

accuracy was evaluated using Kappa statistics and overall classification accuracy, both 

of which exceeded 90%. 

• Validation Strategy: The model’s performance was validated by comparing the 

predicted LULC map for 2023 with actual LULC data. The Kappa coefficient of 0.86 

indicated a strong agreement between the predicted and actual LULC distributions. The 

predicted and actual LULC distribution using the following formulas in equations 8 and 

9: 

 

Overall Accuracy =  
sum of correctly classified pixels

total reference pixels for that category
 ×  100          (8) 

User Accuracy =  
correctly classified pixels for a category

total reference pixels for that category
 ×  100   (9) 

To avoid redundancy, accuracy metrics are reported in the Results section. Here, the 

validation approach is described. LULC Classification Validation: Independent reference 

samples (20% of the dataset) were used to generate confusion matrices, which reported the 

overall accuracy and the Kappa coefficient. 

 

Predictive Modelling Validation: The CA–ANN predictions for 2023 were compared against 

an independently classified LULC map for 2023. This “actual” map was derived directly from 

Landsat 9 imagery, not from training inputs, ensuring independent validation. 

 

LST Validation: Ground-based temperature records were unavailable; therefore, direct 

validation of LST retrieval was not performed. Instead, results are interpreted within the 

context of established Landsat-based LST methods and recent literature acknowledging the 

absence of in-situ thermal validation for many African cities. 

 

The Cellular Automata (CA)–Artificial Neural Network (ANN) model, used to predict 

future land-use and land-cover (LULC) patterns up to 2050, was validated using QGIS, 
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achieving an overall accuracy of 92%. The rationale for utilising CA-ANN lies in its ability to 

simulate spatial-temporal LULC changes with high precision by integrating historical land-use 

data and topographical features (Faisal et al., 2021). The model’s reliability was further 

strengthened by the MOLUSCE plugin, which incorporates multiple validation metrics, 

including Kappa statistics. These metrics provide robust evaluations of the model’s predictive 

accuracy and consistency. 

 

2.8 Remote Sensing Indices Selection Justification 

The selection of indices such as NDVI and NDBI is based on their established roles in assessing 

vegetation cover and built-up areas, both of which are crucial for understanding urban heat 

dynamics. NDVI is essential for identifying dense vegetation areas, which mitigate urban heat 

by reducing surface temperatures through evapotranspiration (Guha et al., 2020). In contrast, 

NDBI is effective in detecting built-up regions where impervious surfaces contribute to 

elevated surface temperatures, intensifying the urban heat island (UHI) effect. These indices 

were selected for their reliability in distinguishing different LULC types, which is critical for 

developing accurate predictive models of urban heat dynamics. The inclusion of the Urban 

Thermal Field Variance Index (UTFVI) enhances the analysis by quantifying the urban heat 

effect and its relationship to ecological health. This provides a more comprehensive 

understanding of the impacts of UHI. Recent studies, such as Cevik Degerli and Cetin (2023), 

have validated UTFVI as a key indicator of ecological stress in urban environments. Figure 2 

shows the methodological flowchart. 
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Figure 2: Methodological Flowchart 

 

3.0 Results 

3.1 Land-use and Land-cover (LULC) Classification Trends 

3.1.1. Temporal Analysis of LULC Changes (1984–2023)  

Over the past 39 years, the Kano Metropolis has undergone significant changes in land cover. 

Built-up areas expanded nearly eightfold from 43.06 km² (2.9%) in 1984 to 381.79 km² (25.9%) 

in 2023, reflecting rapid population growth and urban sprawl. This expansion primarily 

occurred at the expense of bare land, which declined by 23.2%, while vegetation cover 

remained relatively stable, with only a slight net reduction. This trajectory illustrates a 

distinctive semi-arid urbanisation pattern: unlike tropical cities where vegetation loss 

dominates, in Kano, the conversion of bare land to impervious built-up surfaces is the primary 

driver of urban change. This pattern has direct implications for thermal dynamics, since 

impervious surfaces strongly amplify heat retention. Figure 3 and Table 2 present the 

classification results for four key years: 1984, 2000, 2010, and 2023. 
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Figure 3: Depicts the distribution of Land Use and Land Cover (LULC) classes in the study 

areas over four different time periods: (a) 1984, (b) 2000, (c) 2010, and (d) 2023 

 

Table 2: Distribution of LULC classes in the study area from 1984 to 2023 

LULC 

Class 

1984 

(km²) 

2000 

(km²) 

2010 

(km²) 

2023 

(km²) 

% 

Change 

(1984–

2000) 

% 

Change 

(2000–

2010) 

% 

Change 

(2010–

2023) 

% 

Change 

(1984–

2023) 

Water 19.31 23.46 26.05 24.29 0.28 0.18 -0.12 0.34 

Built-up 

Area 

43.06 84.56 144.5 381.79 2.82 4.07 16.13 23.02 

Vegetation 192.29 203.9 68.41 189.46 0.79 -9.21 8.23 -0.19 

Bare land 1216.62 1159.36 1232.32 875.74 -3.89 4.96 -24.24 -23.17 

 

The overall classification accuracy for these years remained consistently high, with 

accuracies of 96.19%, 92.12%, 96.26%, and 98.48% for each year, respectively. Built-up 

Areas: The most significant change was the rapid expansion of built-up areas, increasing from 

43.06 km² (2.93%) in 1984 to 381.79 km² (25.95%) in 2023. This represents an almost 800% 

increase in urbanisation, reflecting substantial infrastructural development in the region. Bare 

Land and Vegetation: Simultaneously, bare land coverage decreased by 23.17%, shrinking 
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from 1,216.62 km² (82.69%) in 1984 to 875.74 km² (59.52%) in 2023. Vegetation cover saw a 

slight net decrease from 192.29 km² (13.07%) in 1984 to 189.46 km² (12.88%) in 2023, 

indicating growing pressure on green spaces due to urban expansion. The rapid growth of built-

up areas, particularly between 2010 and 2023, corresponds to population growth and economic 

development in Kano, highlighting the critical need for sustainable urban planning to balance 

urbanisation with environmental sustainability. 

 

3.1.2. Classification Accuracy  

The CART classification achieved high accuracy across all benchmark years, with overall 

accuracies exceeding 92% and Kappa coefficients above 0.85. Table 2 presents the distribution 

of accuracy assessment results. 

 

Table 3: Classification Accuracy from 1984 to 2023 

Year Overall accuracy Kappa Coefficient 

1984 98.67% 0.97 

2000 92.06% 0.85 

2010 98.96% 0.98 

2023 96.80% 0.95 

 

3.2 Land Surface Temperature (LST) Analysis 

3.2.1. Temporal Patterns of LST (1984–2023)  

Land surface temperature (LST) increased significantly over the study period. As shown in 

Table 4, the mean LST rose from 39.72°C in 1984 to 41.54°C in 2023, with a peak of 44.50°C 

recorded in 2010. The maximum LST observed in 2010 reached 52.85°C, highlighting the 

intensifying heat in the urban core, while the minimum temperature in 2023 dropped to 22.00°C 

in areas with substantial vegetation cover and water bodies. The increase in LST is closely 

linked to the urban heat island (UHI) phenomenon, where urbanised areas experience higher 

temperatures compared to surrounding rural areas. The spatial distribution of UHI consistently 

shows that built-up areas recorded higher temperatures than vegetated and bare land regions. 

This pattern underscores the role of impervious surfaces in absorbing and retaining heat, 

amplifying the UHI effect in rapidly urbanising areas like Kano. 
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Table 4: Minimum, Maximum, Mean, and SD of LST distribution in the study area from 

1984 to 2023 

Item/ Year 1984 2000 2010 2023 

Min 24.20 12.24 11.69 22.00 

Max 47.70 47.21 52.85 46.82 

Mean 39.72 39.23 44.50 41.54 

SD 1.80 2.76 2.6 2.30 

 

3.2.2. LST and Spectral Indices Relationship  

To further investigate the impact of urbanisation on thermal patterns, the relationship between 

land surface temperature (LST) and spectral indices such as NDVI and NDBI was analysed. 

The results demonstrated an inverse relationship between NDVI and LST, indicating that areas 

with dense vegetation exhibited lower surface temperatures. In contrast, a strong positive 

correlation was observed between NDBI and LST, showing that built-up areas with impervious 

surfaces significantly contribute to higher temperatures. These findings emphasise the crucial 

role of vegetation in mitigating urban heat and underscore the contribution of urbanisation to 

the intensification of the urban heat island (UHI) effect. Mean LST increased from 39.7°C in 

1984 to 41.5°C in 2023, with a peak of 44.5°C in 2010. Maximum surface temperatures 

exceeded 52°C in dense urban cores, while cooler zones (<25°C) persisted in vegetated and 

water-rich areas. The observed inverse relationship between NDVI and LST (r = –0.32) 

confirms the cooling effect of vegetation. In contrast, the positive correlation between NDBI 

and LST (r = 0.57) highlights the role of impervious surfaces in amplifying heat. 

 

3.3 Urban Thermal Field Variance Index (UTFVI) and Ecological Health 

3.3.1. UTFVI Trends (1984–2023) 

The Urban Thermal Field Variance Index (UTFVI) was calculated over the study period to 

assess the ecological stress resulting from the urban heat island (UHI) effect. Table 5 classifies 

urban areas based on thermal stress levels, ranging from “None” (indicating excellent 

ecological health) to “Strongest” (indicating the worst ecological conditions) as depicted in 

Figure 4. UTFVI results show a progressive increase in ecological stress. In 1984, only 3.5% 

of the city fell into the “worst” category (UTFVI > 0.020), while by 2023, this had risen to 

18.3%, concentrated in newly urbanised zones. 
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• 1984: In this year, 23.46% of the study area experienced low thermal stress (UTFVI < 

0.005), while only 3.48% of the area showed severe thermal stress (UTFVI > 0.02). 

• 2023: By this year, the proportion of areas under severe thermal stress (UTFVI > 0.02) 

had risen to 18.31%, particularly in rapidly urbanising zones, reflecting the 

deteriorating ecological conditions due to urban expansion. 

 

These findings highlight the increasing ecological stress driven by urbanisation and 

emphasise the urgent need for sustainable interventions to mitigate the negative impacts of the 

UHI effect on urban environments. 
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Table 5: Distribution of the UHI phenomenon with their respective ecological evaluation index of UTFVI in the study area from 1984 to 2023 

Urban Thermal 

Field Variation 

Index 

Urban Heat 

Island 

Phenomenon 

Ecological 

Evaluation 

Index 

Area (in sq km) Net Change (in %) Overall 

Changes 

(in %) 
1984 2000 2010 2023 1984 - 

2000 

2000 - 

2010 

2010 - 

2023 

< 0 None Excellent 546.19 155.81 434.48 474.91 -26.53 18.94 2.75 -4.84 

0.000 – 0.005 Weak Good 99.36 51.23 59.4 38.84 -3.27 0.56 -1.40 -4.11 

0.005 – 0.010 Middle Normal 113.38 508.68 64.02 40.26 26.87 -30.22 -1.61 -4.97 

0.010 – 0.015 Strong Bad 123.97 514.28 109.26 40.94 -8.43 7.43 -4.64 -5.64 

0.015 – 0.020 Stronger Worse 126.64 162.93 170.24 145.16 2.47 0.50 -1.70 1.26 

>0.020 Strongest Worst 461.74 78.35 633.88 731.17 -26.06 37.76 6.61 18.31 

 

This pattern demonstrates that rapid urban growth directly intensifies ecological stress, reinforcing the urgency of incorporating vegetation 

preservation and climate-sensitive design into urban planning. 
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Figure 4: Dry season UTFVI distribution in the study area (a) 1984, (b) 2000, (c) 2010 and 

(d) 2023 

 

3.3.2. Ecological Implications 

The significant increase in UTFVI values from 1984 to 2023 reflects a decline in urban 

ecological health, with a growing proportion of areas experiencing high thermal stress. This 

trend highlights the urgent need for urban greening initiatives, such as expanding parks and 

increasing vegetative cover, to enhance ecological conditions and mitigate the adverse effects 

of the urban heat island (UHI) phenomenon. Implementing these strategies is crucial for 

improving the livability of urban spaces and fostering climate resilience in rapidly urbanising 

regions. 

 

3.4 Statistical Analysis: Pearson’s Correlation 

3.4.1. Correlation Between Environmental Variables and LST 

Pearson’s correlation analysis was conducted to explore the relationships between key 

variables, including population density (Pop), slope, Digital Elevation Model (DEM), urban 

thermal field variance index (UTFVI), urban heat island (UHI), LST, NDVI, and NDBI. The 

correlation matrix is presented in Table 6 and visually summarised in Figure 5. 
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Figure 5: Pearson’s correlation plot 

 

• Population Density and Vegetation (NDVI): A moderate negative correlation was 

observed between population density and NDVI (-0.32), suggesting that areas with 

higher population densities tend to have reduced vegetation cover. 

• LST and UHI/UTFVI: LST was strongly correlated with UHI (1.00) and UTFVI (0.99), 

indicating that LST is a direct driver of the UHI effect in Kano. As urban areas 

expanded, so did the intensity of UHI, with built-up regions showing the most 

significant increases in thermal stress. 

• DEM and LST: A weak positive correlation was found between DEM and LST (0.21), 

suggesting that higher elevations in the study area are slightly warmer, though not as 

significantly as low-lying urban areas. 

• NDBI and UHI/LST: A moderate positive correlation was found between NDBI and 

both UHI and LST (0.57), reinforcing the finding that built-up areas with impervious 

surfaces contribute to elevated temperatures. 
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These correlations highlight the influence of urbanisation on thermal dynamics, 

particularly the role of impervious surfaces and reduced vegetation in exacerbating urban heat 

effects. 

 

Table 6: Pearson’s correlation 

 Pop Slope DEM UTFVI UHI LST NDVI NDBI 

Pop 1.00 0.07 0.18 -0.05 -0.08 -0.08 -0.32 -0.09 

Slope 0.07 1.00 -0.10 -0.02 -0.03 -0.03 -0.01 -0.04 

DEM 0.18 -0.10 1.00 0.24 0.21 0.21 -0.19 0.14 

UTFVI -0.05 -0.02 0.24 1.00 0.99 0.99 0.23 0.57 

UHI -0.08 -0.03 0.21 0.99 1.00 1.00 0.21 0.57 

LST -0.08 -0.03 0.21 0.99 1.00 1.00 0.21 0.57 

NDVI -0.32 -0.01 -0.19 0.23 0.21 0.21 1.00 -0.12 

NDBI -0.09 -0.04 0.14 0.57 0.57 0.57 -0.12 1.00 

 

3.4.2. Interpretation of Correlation Results 

The statistical results confirm that urban expansion, as reflected by NDBI, is strongly 

associated with rising LST and the intensification of the urban heat island (UHI) effect. The 

negative correlation between NDVI and LST highlights the cooling effect of vegetation, 

emphasising the importance of preserving green spaces in urban planning. Moreover, the strong 

correlations between LST, UHI, and UTFVI indicate that UHI intensification is directly linked 

to rising surface temperatures and declining vegetation, making urban areas increasingly 

vulnerable to thermal stress. These findings underscore the necessity for sustainable urban 

development strategies that integrate vegetation to mitigate the negative impacts of 

urbanisation on thermal dynamics. 

 

3.5 Predictive Modelling of Future LULC and Thermal Patterns 

3.5.1. LULC Predictions for 2033 and 2050 

The CA–ANN model predicts continued urban expansion, with built-up areas expected to grow 

by 6.5% between 2023 and 2050, primarily at the expense of bare land. Vegetation cover is 

projected to remain relatively stable, with a slight increase by 2050, possibly reflecting the 

impact of greening initiatives. 



251 

Unless urban greening is actively implemented, Kano will face more pronounced UHI 

effects, with higher surface temperatures and increased ecological stress. This highlights the 

importance of integrating predictive models into planning decisions to pre-empt adverse 

outcomes. Using the Cellular Automata-Artificial Neural Network (CA-ANN) model, land-use 

and land-cover (LULC) changes were projected for 2033 and 2050, as shown in Figures 6 and 

7. The model, validated with a Kappa coefficient of 0.86 and an overall accuracy of 92%, 

predicted continued urban expansion, accompanied by a reduction in vegetation and an increase 

in bare land. 



252 

 

Figure 6: Simulated LULC for 2033 in the study area 

 

 

Figure 7: Simulated LULC for 2050 in the study area 
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• 2033 Projections: Built-up regions are projected to increase by 1.45%, while bare land 

is expected to decrease by 1.59%. Vegetation cover is forecasted to experience a slight 

decline of 0.03%. See Table 7. 

• 2050 Projections: The trend continues, with built-up areas anticipated to expand by an 

additional 5.02%, resulting in a net reduction of bare land by 7.41%. Interestingly, 

vegetation cover is predicted to increase slightly by 0.30%, possibly reflecting urban 

greening initiatives. See Table 8. 

 

These projections highlight the persistent urbanisation in Kano Metropolis and stress 

the need for sustainable development strategies that balance urban growth with ecological 

conservation. 

 

Table 7: LULC simulation Validation of CA model for 2023 and 2050 

Prediction 

Year 

QGIS- MULUSCE Plugin module 

% of Correctness K - overall K - histo K - loc 

2033 91.49 0.85 0.89 0.95 

2055 92.34 0.86 0.89 0.96 

 

Table 8: Change in LULC classes from 2023 to 2033 and 2050 

LULC 2023 2033 2050 Net Change 

(%) 

Overall 

Change 

(%) Area 

(sqkm) 

Area 

(%) 

Area 

(sqkm) 

Area 

(%) 

Area 

(sqkm) 

Area 

(%) 

2023 - 

2033 

2023 - 

2050 

Water 24.29 1.65 26.81 1.82 31.22 2.12 0.17 0.47 0.64 

Built-up 381.79 25.95 403.11 27.40 455.64 30.97 1.45 5.02 6.47 

Vegetation 189.46 12.88 188.95 12.84 194.42 13.21 -0.03 0.34 0.30 

Bare Land 875.74 59.52 852.42 57.94 790 53.69 -1.59 -5.83 -7.41 

 

3.5.2. Implications of Predictive Modelling on Urban Heat 

The predicted LULC changes for 2033 and 2050 suggest that the urban heat island (UHI) effect 

is likely to intensify as urban areas continue to expand. The increase in built-up areas, alongside 

the reduction in bare land, is expected to contribute to higher surface temperatures, particularly 

in densely populated regions. This projection underscores the urgent need for sustainable urban 

planning strategies that incorporate green infrastructure to mitigate the future impacts of the 
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UHI effect and enhance climate resilience. Implementing these measures will be essential to 

promoting a balanced approach to urban growth, while minimising thermal stress on both urban 

populations and ecosystems. 

 

4.0 Discussion 

4.1 Comparison with Previous Studies 

This study demonstrates a clear relationship between land-use/land-cover (LULC) changes and 

the intensification of the urban heat island (UHI) effect in Kano Metropolis. The expansion of 

built-up areas and reduction of bare land over the last four decades have contributed 

significantly to the observed increase in land surface temperature (LST). As urbanisation 

progresses, impervious surfaces, such as roads and buildings, replace natural vegetation, 

leading to higher heat retention and exacerbating the UHI effect. While vegetation cover did 

decline slightly, it was not the primary driver of temperature increases; instead, the conversion 

of bare land to built-up areas had the most pronounced thermal impact. The negative correlation 

between NDVI and LST (r = –0.32) highlights the cooling effect of vegetation, and the positive 

correlation between NDBI and LST (r = 0.57) demonstrates how urban expansion increases 

thermal stress through impervious surfaces. These results align with studies in similar semi-

arid regions, suggesting that land use is a primary determinant of urban thermal dynamics in 

these contexts. The notable growth in built-up areas, from 2.93% in 1984 to 25.95% in 2023, 

mirrors trends observed in other rapidly urbanising cities such as Lagos, Nigeria, and Dhaka, 

Bangladesh, where urban expansion has been closely linked to rising surface temperatures and 

the intensification of the UHI phenomenon (Derdouri et al., 2021; Fang et al., 2024; Karen C. 

Seto et al., 2012). These findings are consistent with existing research, which identifies 

urbanisation as a key driver of increasing land surface temperatures (LST), primarily due to 

the replacement of natural vegetation with impervious surfaces, such as buildings and roads, 

that trap and emit heat. 

The negative correlation between NDVI and LST observed in this study aligns with the 

work of Guha et al. (2020), which showed that areas with higher vegetation cover experience 

lower temperatures due to the cooling effects of evapotranspiration. This underscores the 

critical role of green spaces in mitigating UHI effects and highlights the importance of 

vegetation for cooling urban environments, a conclusion well-supported by previous studies. 

However, the relatively small decrease in vegetation in Kano (-0.19% over 39 years) differs 

from the more substantial vegetation losses seen in other cities. This disparity may be due to 
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the preservation of agricultural lands and parks in Kano, which still provide some cooling 

effects, although these are insufficient to offset the rapid urbanisation. 

Another key finding is the link between the expansion of built-up areas and increasing 

urban thermal stress, as indicated by rising Urban Thermal Field Variance Index (UTFVI) 

values. Similar findings have been reported by Cevik Degerli and Cetin (2023), who observed 

declining ecological health in rapidly growing urban areas due to increased thermal stress. This 

study contributes to the body of literature by demonstrating how the growth of built-up regions 

in Kano has exacerbated thermal stress, particularly in densely populated areas. 

The predictive modelling of future LULC changes points to a continued increase in 

built-up areas and a corresponding decrease in bare land and vegetation by 2050. These 

projections align with other studies that predict an intensification of the UHI effect if current 

urbanisation trends persist. However, unlike many studies that attribute rising LST primarily 

to vegetation loss, our findings suggest that in Kano, the conversion of bare land to built-up 

areas will play a more significant role, given that vegetation losses have been relatively modest 

compared to the substantial urban expansion. 

 

4.2 Unique Insights and Discrepancies 

The significant increase in UHI intensity observed in Kano corresponds closely with the spatial 

growth of urbanised areas and the decline in bare land. The Urban Thermal Field Variance 

Index (UTFVI) revealed a significant increase in thermal stress between 1984 and 2023. While 

the correlation between LST and UHI intensity is strong (r = 1.0), the relationship between 

population density, LULC changes, and thermal dynamics is more complex. The positive 

correlation between NDBI and LST (r = 0.57) suggests that urban sprawl is directly linked to 

the intensification of heat stress, a finding also reported in other rapidly urbanising semi-arid 

cities. However, caution is needed when interpreting the causes of vegetation changes. While 

bare land has decreased significantly, the reduction in vegetation cover is relatively small, 

suggesting that external factors, such as agricultural practices or land-use policies, may have 

contributed to this change. As semi-arid regions like Kano often rely heavily on agriculture, 

the dynamics between urbanisation and agricultural land use merit further study. This contrasts 

with trends in the other areas, where urbanisation has typically led to substantial reductions in 

green spaces. The modest decline in vegetation in Kano may be explained by its semi-arid 

climate, where natural vegetation is already sparse, and much of the land was categorised as 

bare before rapid urbanisation began. This highlights the importance of considering local 

climatic and environmental factors when evaluating the impacts of land-use and land-cover 
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(LULC) changes on thermal patterns. Another possible explanation for this discrepancy is the 

presence of agricultural lands within the metropolitan area, which have been preserved to some 

extent due to their economic importance. The conservation of these lands has likely mitigated 

the typical vegetation loss associated with urban expansion. However, our predictive models 

indicate that, if unchecked, continued urban growth will likely result in the conversion of these 

agricultural lands into built-up areas by 2050, which would further exacerbate urban heat island 

(UHI) effects. An additional noteworthy finding is the projected increase in vegetation cover 

by 2050 (by 0.30%), an unusual result compared to predictions for other urban areas. This 

projection may reflect potential urban greening initiatives or afforestation programs, which 

have gained traction in recent years as part of global and national climate resilience strategies. 

However, it is important to interpret these projections cautiously, as the successful 

implementation of such green infrastructure projects depends on political will, financial 

investment, and effective execution. 

 

4.3 Limitations of CA-ANN Predictions 

The Cellular Automata–Artificial Neural Network (CA-ANN) model demonstrated its utility 

in forecasting future LULC changes and UHI trends. However, its predictions should be viewed 

with caution. The model primarily relies on historical LULC data and environmental variables 

(e.g., proximity to roads, population density), which may not fully account for future policy 

interventions or external development pressures. The projected growth in built-up areas (an 

increase of 6.5% by 2050) assumes that current urban expansion trends will persist. Still, policy 

changes (e.g., zoning regulations or urban green spaces) could significantly alter these 

predictions. Additionally, climate change and global development trends may introduce 

uncertainties into future land-use projections, especially since these models do not fully 

account for non-local influences, such as international investment flows and global trade 

patterns. 

 

4.4 The Role of Other Urban Factors in UHI 

While the study primarily focused on LULC changes, other urban factors, such as 

transportation infrastructure, building materials, and energy consumption, also contribute to 

the UHI effect. High-density transport networks, for example, can exacerbate heat stress by 

increasing the extent of impervious surfaces and generating localised heat through vehicular 

emissions. Similarly, construction materials such as concrete and asphalt absorb more heat than 

natural landscapes, thereby intensifying urban thermal conditions. These factors should be 
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considered when developing comprehensive UHI mitigation strategies, such as the use of cool 

roofs, green building practices, and sustainable transport systems. The complex interplay 

between these urban factors and LULC changes underscores the need for integrated urban 

planning that considers both ecological and infrastructural aspects to combat UHI effectively. 

 

4.5 Implications for Sustainable Urban Development 

The findings underscore the necessity for sustainable urban planning in the Kano Metropolis, 

particularly in light of the anticipated intensification of UHI effects. Urban planners must 

prioritise the integration of green infrastructure such as parks, green roofs, and urban forests to 

reduce the UHI impact. Furthermore, sustainable building materials and cooling technologies 

should be promoted to mitigate the thermal effects of impervious surfaces. Ensuring that urban 

growth does not come at the expense of ecological health is critical to climate resilience, 

particularly in semi-arid cities that already face significant thermal stress and resource 

limitations. The significant increase in built-up areas and the intensification of urban heat island 

(UHI) effects highlight the urgent need for urban planning practices that prioritise climate 

resilience and ecological health. Without proactive interventions, continued urban expansion 

will likely exacerbate surface temperatures, resulting in detrimental effects on public health, 

energy consumption, and ecological stability. 

The negative correlation between NDVI and LST underscores the critical role of green 

spaces in mitigating urban heat. Urban planners should prioritise the preservation and 

expansion of parks, urban forests, and other vegetative areas as integral components of 

development strategies. The predicted increase in vegetation cover by 2050, as suggested by 

the model, should be actively promoted through policies encouraging urban greening 

initiatives. These could include afforestation, green roofs, and the establishment of green belts, 

which have been shown to lower LST and enhance urban livability. The strong positive 

correlation between NDBI and LST highlights the importance of sustainable building practices 

that reduce the use of impervious materials and incorporate heat-reflective designs. Policies 

should promote the adoption of energy-efficient building materials, cool roofing technologies, 

and increased tree cover around buildings to reduce the heat absorption capacity of built-up 

areas. These measures could significantly mitigate the UHI effect while improving the energy 

efficiency of urban environments. 

The projected expansion of built-up areas by 2050 emphasises the need for careful land-

use planning to ensure that future urban growth does not come at the expense of essential green 

spaces and agricultural lands. Zoning regulations should be updated to mandate green 
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infrastructure in new developments, and incentives should be provided for developers who 

incorporate sustainable practices into their projects. Preserving agricultural lands near urban 

centres is also crucial for maintaining ecological balance, supporting food security, and 

reducing the adverse effects of urbanisation. This study emphasises the importance of 

integrating urban planning with climate change adaptation policies. Local governments must 

consider the environmental and public health implications of urbanisation when developing 

long-term expansion plans. Urban heat management strategies, such as increasing vegetation 

cover, enhancing urban water bodies, and constructing climate-resilient infrastructure, should 

be included in climate action plans to help cities address the challenges of rapid urbanisation. 

Integrating these strategies into broader climate resilience frameworks will be essential for 

promoting sustainable urban growth. 

 

5.0 Conclusion 

This study highlights the significant impact of land-use/land-cover (LULC) changes on the 

urban heat island (UHI) effect in the Kano Metropolis, Nigeria, over 39 years. Our findings 

show that urban expansion, primarily through the conversion of bare land into built-up areas, 

has led to increased land surface temperatures (LST) and intensified UHI effects. The positive 

correlation between Normalised Difference Built-up Index (NDBI) and LST, coupled with the 

negative correlation between Normalised Difference Vegetation Index (NDVI) and LST, 

underscores the role of vegetation in cooling urban environments, while built-up areas amplify 

heat. Predictive modelling further projects significant urban growth through 2050, emphasising 

the ongoing challenges of balancing urbanisation with sustainable development. The study also 

emphasises the importance of integrating green infrastructure and sustainable urban planning 

into future urban development strategies to mitigate the escalating UHI effects and promote 

climate resilience in rapidly urbanising regions. Measures such as preserving vegetation and 

adopting cooling technologies are critical to improving urban livability in semi-arid cities like 

Kano. 

However, several limitations need to be considered when interpreting the results and 

applying them to other contexts. First, the predictive modelling relied heavily on historical data 

and environmental variables, but did not fully account for future policy interventions or the 

impacts of climate change. This uncertainty means that the projections for 2033 and 2050 are 

contingent on current trends continuing without significant policy changes or external 

disruptions. Additionally, LST validation was not performed due to the absence of ground-

based thermal data, and therefore, the retrieved LST values should be interpreted with caution. 
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Finally, while urban factors such as building materials and transportation were acknowledged, 

they were not fully integrated into the model, limiting the comprehensiveness of the UHI effect 

analysis. 

These limitations suggest that future studies should incorporate more localised data, 

including ground truth measurements for LST, and consider policy changes and other urban 

dynamics, such as construction practices and transportation infrastructure. Further research 

could also focus on testing UHI mitigation measures to evaluate their effectiveness in real-

world scenarios, particularly in semi-arid and rapidly urbanising cities across sub-Saharan 

Africa. 

 

5.1 Implications for Sustainable Urban Development 

The findings highlight the urgent need for sustainable urban planning that prioritises climate 

resilience. Urban expansion must be balanced with the preservation and enhancement of green 

spaces to mitigate the UHI effect and reduce ecological stress. Policies that promote the use of 

sustainable building materials, urban greening initiatives, and heat-reflective infrastructure are 

essential for improving urban livability. Furthermore, land-use planning and zoning regulations 

must ensure that future developments incorporate climate adaptation strategies to protect public 

health and maintain ecological stability. 

 

5.2 Future Research Directions 

While this study contributes valuable insights into the nexus between LULC changes and urban 

thermal dynamics, further research is needed in several key areas: 

1. Localised UHI Mitigation Strategies: Future research should focus on identifying and 

testing localised urban heat mitigation strategies, such as the effectiveness of urban 

greening initiatives, green roofs, and cool pavement technologies, particularly in semi-

arid regions like Kano. 

2. Socio-Economic Factors and Informal Urbanisation: Investigating the socio-economic 

drivers behind informal settlements and unplanned urban sprawl could provide deeper 

insights into the rapid urbanisation patterns observed. This could help inform policy 

interventions aimed at managing urban growth more sustainably. 

3. High-Resolution Thermal Analysis: Conducting more granular studies of LST at the 

neighbourhood level would enable the identification of specific UHI hotspots, allowing 

for more targeted and effective interventions to mitigate the adverse effects of rising 

urban temperatures. 
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4. Longitudinal Impact of Green Infrastructure: Long-term studies on the effectiveness of 

green infrastructure in reducing UHI effects, particularly in rapidly urbanising regions, 

are needed to assess the potential of urban greening as a sustainable solution to urban 

thermal challenges. 

In conclusion, this study emphasises the critical need for well-balanced urban 

expansion policies that integrate ecological considerations into urban planning. As cities 

continue to grow, the findings from this research provide a valuable foundation for decision-

makers seeking to promote sustainable, climate-resilient urban development. 
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