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____________________________________________________________________________________ 

Abstract – Peninsular Malaysia (PM) rainfall varies significantly due to El Niño-Southern Oscillation (ENSO), making it an 

important region to study the relationship between Normalized Difference Vegetation Index (NDVI) and rainfall. These 

connections are complex, spatially non-linear, non-stationary, and scale-dependent, challenging conventional regression 

models. A local modelling approach, Geographically Weighted Regression (GWR), was employed to address this, 

accommodating spatial relationship variability. This study utilizes the CMORPH gridded dataset to explore the NDVI-rainfall 

relationship in PM during very strong El Niño events of 2015/2016 and strong La Niña events of 2010/2011. During the El 

Niño 2015/2016 event, the Gaussian weighting function achieved an Akaike Information Criterion (AIC) of 398.48 and a quasi-

global R² of 0.63, outperforming the Bisquare function’s AIC of 434.12 and quasi-global R² of 0.48. In the La Niña 2010/2011 

event, the Bisquare function excelled with an AIC of 442.01 and a quasi-global R² of 0.52, while the Gaussian recorded an AIC 

of 505.69 and a quasi-global R² of 0.10. The median local Coefficient of Determination (local R²) for El Niño (0.6 to 0.8) was 

higher than that for La Niña (some areas dropping below 0.4), highlighting the GWR model’s superior performance in capturing 

spatial variation. In terms of predictive power, the metrics demonstrate superior model performance during El Niño, with a 

Mean Absolute Error (MAE) of 0.5, a Root Mean Square Error (RMSE) of 0.66, Coefficient of Determination (R²) value of 

0.63 indicating significant variance explained, and Nash-Sutcliffe Efficiency (NSE) and the Kling-Gupta Efficiency (KGE) 

both equal to 0.63 and 0.6, respectively. 
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1.0 Introduction 

Adequate rainfall supports plant life and increases vegetation cover (Muhammad et al., 2020). On 

the other hand, insufficient or irregular rain can lead to drought conditions, negatively affecting 

vegetation (Bechtold, 2018). However, the high spatial variability in the rainfall distribution across 

an area can influence the types of vegetation that thrive in tropical regions (Gaviria et al., 2017). 

This intricate relationship underscores the significance of understanding how rainfall patterns affect 

the vitality and composition of vegetation, contributing to a broader comprehension of ecosystem 

dynamics. To assess the influence of rainfall variations on vegetation growth, it is imperative to 

conduct an analysis examining the spatial correlation between vegetation and rainfall (Muhammad 

et al., 2020). The quantification of vegetation levels can be derived using vegetation indices such 

as the Normalized Difference Vegetation Index (NDVI) (Pang et al., 2017). The NDVI is a widely 

utilized proxy for vegetation greenness across diverse regional and global studies. Numerous 

studies have used time series NDVI derived from various satellite sources as dependent variables 

in investigations exploring the relationship between NDVI and rainfall (Mallick et al., 2021; 

Georganos et al., 2017; Zhang et al., 2017; Moses et al., 2022). Most works discovered a robust 

and more predictable relationship between rainfall and NDVI when an appropriate spatial scale is 

employed. Consequently, multi-spectral satellite data with medium spatial resolution, such as 

Moderate Resolution Imaging Spectroradiometer (MODIS) imagery, can be considered more 

suitable for obtaining improved NDVI values (Lamchin et al., 2015). 

The variation in NDVI is impacted by prevailing climatic conditions such as rainfall and 

temperature, and this correlation is consistently observed across various spatial and temporal scales 

(Gaviria et al., 2017). Rainfall is crucial in predicting vegetation distribution, particularly in 

Peninsular Malaysia (PM) (Lion et al., 2017). Given the region’s tropical climate, characterized by 

distinct wet and relatively dry monsoons which can be exaggerated by the large-scale climate 

phenomena like the El Niño-Southern Oscillation (ENSO) events, the amount and distribution of 

rainfall directly impact the health and composition of vegetation (Arjasakusuma et al., 2018). In 

this context, the severe weather occurrences linked to ENSO, such as droughts triggered by El Niño 

or heavy rainfall caused by La Niña, contribute to fluctuations in vegetation health and composition 

(Boyd et al., 2002). Indeed, it has been observed that the variations in rainfall patterns influence 

soil moisture levels, which, in turn, affect plant growth and ecosystem dynamics (Wang and 

Hamzah, 2018; Marryanna et al., 2019). The interplay between rainfall and vegetation is intricate, 
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as different plant species exhibit varying responses to the duration and intensity of rainfall. 

Therefore, the inclusion of ENSO events needs to be investigated to further understand its impact 

on the NDVI-rainfall relationship. 

While numerous studies describe the connection between NDVI and rainfall, they 

frequently utilize worldwide linear models adjusted through ordinary least squares (OLS) 

regression techniques (Mallick et al., 2021; Udelhoven et al., 2009; Balaghi et al., 2008). Yet, the 

spatial and temporal fluctuations in the relationship between NDVI and rainfall depend on 

additional factors such as vegetation composition, land cover, soil type, terrain characteristics, 

human influence, and microclimatic conditions. Models assuming stationarity may inadequately 

capture the true nature of these relationships, raising concerns about the validity of their results. 

The sensitivity of environmental change in PM to fluctuations in rainfall, particularly under the 

influence of ENSO phenomena like El Niño and La Niña, is a critical aspect of ecological dynamics 

in the region. The tropical climate of PM, characterized by distinct wet and dry seasons, makes 

rainfall a key determinant of environmental health (Mohd Razali et al., 2016). The influence of 

ENSO events, such as El Niño-induced droughts or La Niña-driven heavy rainfall, adds a layer of 

complexity to this relationship. Compared to other regions, the greening of the tropics due to 

increased rainfall is not well studied in PM. It is assumed that heightened rainfall levels may 

contribute to the proliferation of herbaceous and tree cover (Chew et al., 2022; Wang and Hamzah, 

2018). The increase in rainfall is a primary mechanism driving this observed greening, creating a 

conducive environment for vegetation growth. Infusing moisture into the soil enhances soil fertility 

and provides the conditions for plant germination, growth, and reproduction (Born et al., 2015; 

Marryanna et al., 2019). 

The intricate and spatially diverse connection between NDVI and rainfall has not been 

extensively explored in tropical regions, particularly in PM. To address this gap, this study employs 

GWR, a local non-parametric regression method that facilitates a detailed analysis of these 

relationships (Georganos et al., 2017; Zhao et al., 2015). Widely used in human geography and 

gaining popularity in ecology, GWR accommodates spatial variability, offering a better 

understanding of non-stationary relationships. The study focuses on the PM from 2000 to 2022, 

emphasizing the impact of ENSO events, specifically the El Niño and La Niña events. These 

extreme periods were chosen to capture substantial differences in total rainfall during contrasting 

ENSO events, facilitating the examination of temporal changes in spatial correlations. The study 
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compares Gaussian and Bisquare weighting within the GWR framework to evaluate which scheme 

more effectively captures the spatial relationships between NDVI and rainfall under varying 

climatic conditions. By mapping local regression outcomes, the research seeks to pinpoint regions 

within PM that display specific sensitivity to changes in rainfall, providing valuable understanding 

into the NDVI-rainfall dynamics under extreme influence of ENSO. 

 

2.0 Study Area 

The research focuses on PM, with its district boundaries shown in Figure 1. PM is situated in 

Southeast Asia and covers the southern part of the Malay Peninsula (Houmsi et al., 2023). The 

South China Sea borders the east coast of PM. PM covers an approximate area of 131,598 km2 and 

comprises eleven states and two federal territories. The region’s topography ranges from coastal 

plains and lowlands to hilly and mountainous terrain. Notable mountain ranges include the 

Titiwangsa and the Banjaran Bintang Range in the north. This region experiences a tropical climate 

influenced by the Northeast Monsoon (NEM) and Southwest Monsoon (SWM) seasons 

(Muhammad et al., 2022). The NEM commonly takes place between November and March, 

resulting in substantial rainfall in the states along the east coast, including Kelantan, Terengganu, 

Pahang, and the eastern region of Johor. The SWM brings rainfall to the west coast states such as 

Penang and Selangor. Exploring the NDVI-rainfall relationship in PM during the NEM is crucial 

for understanding this region’s unique climatic patterns and ecological implications. 

 

 



 

5 
 

Figure 1. The PM is located within Southeast Asia with 170 grid points of gridded-based satellite 

CMORPH rainfall dataset, district boundary, and elevation based on Shuttle Radar Topography 

Mission (SRTM) at 90 m spatial resolution. 

 

3.0 Data and Sources 

3.1 Gridded-Based Satellite CMORPH Rainfall Data 

Of the available remote sensing precipitation datasets, CMORPH data stands out with its sufficient 

spatial resolution and extensive coverage, making it a preferred choice among researchers 

(Gumindoga et al., 2019a; Gumindoga et al., 2019b; Pereira Filho et al., 2018). The Climate Data 

Record (CDR) for Satellite Precipitation - CMORPH comprises satellite-derived precipitation 

estimates that have undergone bias correction and reprocessing through the Climate Prediction 

Center (CPC) Morphing Technique (MORPH). This process results in a global, high-resolution 

precipitation analysis (Source: https://www.ncei.noaa.gov/access/metadata/landing-

page/bin/iso?id=gov.noaa.ncdc:C00948) (Joyce et al., 2004). The data is reprocessed on a global 

grid with a spatial resolution of 8×8 km (0.25°), and the daily data was utilized for the current study 

with 170 grid points located within the PM was downloaded, extracted, and then summed into 

monthly value for the duration of selected ENSO event (section 3.3). 

 

3.2 Normalized Difference Vegetation Index (NDVI) 

In PM, rainfall is the primary source of soil and surface water. The presence of water significantly 

influences vegetation growth. Typically, higher rainfall results in increased soil moisture, leading 

to more robust plant growth. Conversely, reduced rainfall tends to hamper vegetation growth. 

Consequently, changes in rainfall serve as a crucial indicator of vegetation growth conditions 

(Wang and Hamzah, 2018). The normalized vegetation index is a metric that assesses vegetation 

by quantifying the variance between the near-infrared and red bands, indicating regional vegetation 

growth. This research used the normalized vegetation index to depict vegetation growth (Huang et 

al., 2021). Within this context, NIR represents the reflectivity of the near-infrared band, and Red 

corresponds to the reflectivity of the red band. The NDVI value ranges from -1 (indicating water 

bodies) to 1 (suggesting dense vegetation). The NDVI data employed in this investigation is 

obtained from atmospherically corrected reflectance in the red and near-infrared wavebands 

captured by the MODIS sensor on board the Terra satellite (Lamchin et al., 2015). In this study, the 
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Vegetation Indices Monthly L3 Global 1km (MOD13A3), a monthly NDVI product at 1 km spatial 

resolution, was extracted for the selected ENSO events (section 3.3), which was obtained from 

http://modis-land.gsfc.nasa.gov/vi.html. The NDVI value was spatially extracted to match the 170 

grid points of CMORPH data. The NDVI was integrated with the duration of the respective ENSO 

events to measure vegetation productivity for each selected event. 

 

3.3 El Niño and La Niña Years 

The PM climate is significantly influenced by the ENSO, with El Niño (La Niña) periods often 

producing drier and warmer (or wetter and cooler) temperatures (Tan et al., 2021). In this study, 

very strong 2015/2016 (June 2015 to May 2016), along with the strong La Niña events of 

2010/2011 (June 2010 and June 2011), respectively, were evaluated to assess the NDVI-rainfall 

relationship (Khor et al., 2021). 

 

4.0 Methods 

4.1 Procedure 

The following procedure outlines the methodological framework adopted to analyze the 

relationship between rainfall and NDVI dynamics under the influence of ENSO events in PM. The 

research flowchart is presented in Figure 2. This study integrates gridded rainfall (CMORPH) and 

NDVI (MOD13A3) datasets, spatial statistical analyses, and GWR to examine the spatial 

variability, autocorrelation, and localized relationships during the El Niño (2015/2016) and La Niña 

(2010/2011) phases. The step-by-step approach includes data preprocessing, model development, 

performance evaluation, and visualization to understand NDVI-rainfall interactions under extreme 

climate conditions comprehensively. The procedure is as follows: 

 

1. Gridded rainfall data from CMORPH and NDVI data from MOD13A3 were collected. Both 

datasets were gridded to a spatial resolution of 0.25 degrees using bilinear interpolation for 

spatial consistency. 

2. Spatial descriptive statistical analysis was conducted to evaluate the spatial variability of 

rainfall and NDVI, including the computation of mean, median, standard deviation (SD), 

skewness, and coefficient of variation (CV). Moran’s I and Geary’s C indices also assessed 

spatial autocorrelation patterns in the rainfall and NDVI datasets. 
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3. The GWR model was developed using an adaptive kernel to analyze the relationship between 

rainfall and NDVI. Two weighting functions, Gaussian and Bisquare, were tested to identify 

the optimal model performance. Model evaluation and comparison were conducted using 

selection criteria such as Akaike Information Criterion (AIC), Corrected Akaike Information 

Criterion (AICc), Quasi-global R², Residual Sum of Squares (RSS), Effective Number of 

Parameters (traceS), and Sigma (model: traceS). 

4. Using the optimized GWR model, two ENSO events, El Niño (2015/2016) and La Niña 

(2010/2011), were selected to examine the dynamics of NDVI-rainfall relationships under 

contrasting ENSO phases. The GWR results for each event were compared with OLS regression 

models, and the comparison was statistically evaluated using the analysis of variance (ANOVA) 

test to identify significant differences between the models. 

5. The performance of the GWR model was assessed using local Coefficient of Determination 

(local R²) values and rainfall coefficients. Predicted NDVI values (iNDVI) were validated 

against performance metrics, including Mean Absolute Error (MAE), Root Mean Square Error 

(RMSE), Coefficient of Determination (R²), Nash-Sutcliffe Efficiency (NSE), and Kling-Gupta 

Efficiency (KGE). An ENSO and iNDVI map were also created to visualize spatial patterns 

under the influence of the El Niño and La Niña events. 
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Figure 2. Research flowchart. 

 

4.2 Test of Spatial Autocorrelation 

Moran’s I statistic is employed as a spatial autocorrelation measure to assess the spatial dispersion 

of rainfall during each ENSO event (Soibam et al., 2015). This statistic evaluates the degree of 

similarity between the rainfall values at different grid points to describe the spatial patterns of 

dispersion, whether they exhibit clustering, randomness, or dispersion. Moran’s I range from -1 

(indicating perfect dispersion) to 1 (indicating ideal clustering), with 0 representing a spatially 

random pattern. The analysis involves calculating observed Moran’s I values, expected values 

under spatial randomness, standard deviation, and p-values to determine the statistical significance 

of the observed spatial autocorrelation of the NDVI-rainfall relationship. This spatial assessment 

aids in characterizing the spatial relationships and patterns of rainfall across the study area during 

the selected ENSO events. The formula for Moran’s spatial autocorrelation coefficient, denoted as 

I, is as follows: 
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𝐼 =  
∑ 𝑛(𝑅𝑖− �̅�)(𝑅𝑗− �̅�)

𝑗
𝑖=𝑛

∑ 𝐽(𝑅𝑖− �̅�)𝑛
𝑖=𝑛

2       (1) 

 

In this formula, n represents the total number of areas, J is the total number of joints, Ri and 

Rj are the rainfall depths in two adjacent areas, and R̅ denotes the overall mean of rainfall. 

In addition to Moran’s I, Geary’s C (Yamada, 2024) was employed to assess spatial 

autocorrelation, measuring the degree of spatial dependency or clustering in geospatial data. It is 

particularly effective for identifying how similar or dissimilar values are positioned near each other 

across a spatial landscape, making it suitable for examining the spatial patterns of NDVI and 

rainfall dynamics under high ENSO influence. This study will calculate Geary’s C to assess the 

spatial autocorrelation of NDVI and rainfall values and understand how neighbouring data values 

exhibit similarity or dissimilarity. The formula for Geary’s C is given as: 

𝑐 =
(𝑛−1)

2 ∑ ∑ 𝑤𝑖𝑗𝑗𝑖
 
∑ ∑ 𝑤𝑖𝑗(𝑥𝑖−𝑥𝑗)2

𝑗𝑖

∑ (𝑥𝑖−�̅�)2
𝑖

      (2) 

 

Where 𝑛 represents the total number of spatial units, 𝑤𝑖𝑗 denotes the spatial weights 

between locations i and j, 𝑥𝑖 and 𝑥𝑗  are the values of the variable (either NDVI or rainfall) at each 

location, and �̅� is the variable’s mean. Geary’s C values range from 0 to 2, with a value of 1 

indicating no spatial autocorrelation, values below 1 suggesting positive spatial autocorrelation 

(similar values cluster together), and values above 1 pointing to negative spatial autocorrelation 

(dissimilar values are more likely to be neighbours). This measure provides clarity into the spatial 

clustering or dispersion of NDVI and rainfall anomalies during ENSO phases, helping to identify 

regions where spatial patterns may strongly influence vegetation responses to rainfall variations. 

The local sensitivity of Geary’s C makes it an ideal complement to global measures like Moran’s 

I, allowing for a more detailed understanding of spatial variations in NDVI-rainfall relationships 

under extreme climate conditions in PM (Bhatti et al., 2024). 

 

4.3 Weighting Method 

This study compared Gaussian and Bisquare weighting functions in GWR to model the relationship 

between NDVI and rainfall across different spatial locations across PM. These functions help 

determine the influence of neighbouring data points based on their distance, allowing for a more 

detailed understanding of spatial variability. The Gaussian weighting method in GWR assigns 
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weights to data points based on a Gaussian, or Normal, distribution, where the influence of each 

point decreases smoothly and continuously with increasing distance from the focal point (Mondiana 

et al., 2024). One of the key advantages of the Gaussian weighting method is its smooth weight 

decay, which provides a gradual and continuous decrease in influence as distance increases 

(Geniaux, 2024). This characteristic makes it particularly useful for capturing broader spatial trends 

while maintaining local detail, as it allows for a flexible adjustment of the bandwidth to control the 

spread of influence. The Gaussian weighting method is also well-understood due to its foundation 

in the widely used Gaussian distribution. It is particularly suitable for studies where a gradual 

change in influence with distance is expected, providing a balanced approach that effectively 

captures local variations and broader spatial patterns. This method is ideal for spatial analyses that 

require a detailed understanding of spatial heterogeneity, as it ensures a smooth transition in 

weights, thereby minimizing abrupt changes and potential discontinuities in the modelled 

relationships. 

On the other hand, the Bisquare function applies weights that decrease to zero beyond a 

certain distance, providing compact support. It limits the influence of points beyond a specific 

threshold, ensuring that only nearby points significantly impact the regression results (Mondiana 

et al., 2024). This approach is efficient when distant data points should not influence the local 

regression model. By sharply reducing the influence of points further away, this method helps 

capture the local variations more accurately. Studies such as Xu et al.  (2015) have utilized this 

function to exclude the influence of distant points entirely. For model comparison, the studied 

ENSO events were used to evaluate the performance of different weighting methods. The 

comparison was based on several metrics, including the AIC, AICc, Quasi-global R², RSS, traceS, 

and Sigma (model: traceS). 

 

4.4 Geographically Weighted Regression 

GWR functions as a localized spatial statistical method tailored to examine spatial non-stationarity. 

It extends and enriches conventional multiple linear regression analysis by directly describing and 

clarifying the quantitative connections among spatial variables. Additionally, GWR provides 

uncertainty assessments for the estimated regression coefficients while offering enhanced 

computational adaptability. This approach efficiently scrutinizes the geographical associations 

involving precipitation and key variables like latitude, longitude, and elevation above sea level. 
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According to Georganos et al. (2017), GWR is useful for evaluating spatial relationships in 

geographical datasets due to its versatility in capturing localized changes. As of now, GWR has 

been extensively employed to investigate spatially varying relationships between NDVI and 

climatic factors in diverse regions, including North China (Zhao et al., 2015), U.S. Central (Kang 

et al., 2014), Saudi Arabia (Mallick et al., 2021), and Africa (Georganos et al., 2017). A complete 

presentation of the GWR method was documented by O’Sullivan (2003). A brief explanation of 

GWR is offered here. A simple statistical model, referred to as a “global model”, can be explained 

by one explanatory variable as follows: 

𝑦𝑖 = 𝑎 + 𝑏𝑥𝑖 + 𝜀𝑖,  𝑖=1 : n      (2) 

 

Where 𝑦 represents the dependent variable, 𝑥 represents the independent variable or 

explanatory factor, ε denotes the error term, a and b are the parameters subject to estimation, and n 

signifies the number of samples corresponding to spatial locations. 

The above model is calibrated using OLS regression, where parameters a and b are 

estimated to minimize the sum of the squares of the model residuals (Georganos et al., 2017). In 

OLS, the estimation of these parameters is expressed through a set of matrix equations, with the 

calculation of parameter b as presented in Equation (3) below: 

�̂� = (𝑋𝑇𝑋)−1𝑋𝑇𝑌       (3) 

 

Here, �̂� represents the estimated value of b; X denotes the vector containing the values of 

the independent variable, and Y represents the vector containing the values of the dependent 

variable. �̂� stays constant throughout the research area, represents the rate at which the dependent 

variable changes with a one-unit variation in the independent variable. This parameter estimate 

particularly relates to the rainfall-NDVI relationship in the empirical example of this research. 

GWR generates an individual regression equation for each observation, with each equation 

calibrated using a distinct weighting of the observations within the dataset. The expressions for 

each GWR equation may take the form: 

𝑦𝑖 = 𝑎 (𝑢𝑖 , 𝑣𝑖) + 𝑏 (𝑢𝑖 , 𝑣𝑖)𝑥𝑖 + 𝜀𝑖 , 𝑖 = 1 : n    (4) 

 

Where the coordinates of location 𝑖 are denoted by (𝑢𝑖 ,  𝑣𝑖) and the local parameters that 

need to be estimated, specifically for location 𝑖  , are 𝑎(𝑢𝑖 ,  𝑣𝑖)and 𝑏(𝑢𝑖 ,  𝑣𝑖). This is achieved by 
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establishing and fitting a sub-model centred on each observation site, utilizing a subset of the initial 

observations. The sub-model investigation region is formed by a neighbourhood defined through a 

weighting technique, where neighbouring observations hold a non-zero weight. Typically, the 

number of submodels corresponds precisely to the number of observations. Therefore, Equation 

(4) can be rephrased as follows: 

 �̂�(𝑢𝑖 , 𝑣𝑖) = (𝑋𝑇𝑊(𝑢𝑖 , 𝑣𝑖)𝑋)−1𝑋𝑇𝑊(𝑢𝑖 , 𝑣𝑖)𝑦   (5) 

 

In this equation, �̂� represents a vector comprising local estimates of 𝑏(𝑢𝑖 ,  𝑣𝑖), and the data 

weights for the regression point i (sub-model i) are specified by the weights matrix 𝑊(𝑢𝑖 ,  𝑣𝑖). A 

continuous distance function dictates these weights, assigning higher weights to observations closer 

to the regression point i and lower weights to those at a greater distance. 

In GWR, the selection of weighting is pivotal as it delineates the neighbourhood. 

Commonly used weighting functions encompass Gaussian, Gaussian-like, or bi-square options. For 

instance, O’Sullivan (2003) suggested the following weighting function, which is Gaussian-like: 

𝑤𝑖𝑗 = 𝑒𝑥𝑝 [−
1

2
(

𝑑𝑖𝑗

𝑏
)2]       (6) 

 

Here, 𝑤𝑖𝑗 represents the weight assigned to observation j in relation to the sub-model for 

location i; 𝑑𝑖𝑗 indicates the Euclidean distance between j and i, and b represents the size of the 

neighborhood. However, most GWR software utilizes the bi-square function, defined as follows: 

𝑤𝑖𝑗 = [1 − (
𝑑𝑖𝑗

𝑏
)

2

]     if 𝑑𝑖𝑗 < 𝑏     (7) 

       = 0 elsewhere 

 

In GWR terminology, the term “kernel” is used to denote the neighbourhood, while the 

maximum distance from the regression location i is termed the “bandwidth” (Georganos et al., 

2017). Two categories of kernels are available for use: a “fixed kernel,” which delineates the 

neighbourhood with a circular boundary having a radius equal to the bandwidth, making it more 

suitable for evenly distributed spatial data like gridded data, and an “adaptive kernel,” where the 

neighbourhood is defined by the count of nearest neighbours, making it more suitable for data with 

varying spatial density such as centroids of administrative boundaries. Different types of kernels 

use distinct weighting schemes. Continuous weighting functions allow parameter estimation at 



 

13 
 

locations beyond the observed points. The choice of bandwidth size is critical, as an excessively 

large bandwidth may lead to a global model with increased bias. In contrast, a bandwidth that is 

too small may result in less biased but more variable estimates with more significant standard errors 

(Georganos et al., 2017). 

 

4.5 Model Comparison 

The F-test, based on ANOVA, was conducted to evaluate and compare the relative performance of 

models, specifically assessing the statistical significance of any observed improvements: 

𝐹 =  

𝑅𝑆𝑆𝑔𝑤𝑟

𝐷𝐹𝑔𝑤𝑟
𝑅𝑆𝑆𝑔𝑙𝑚

𝐷𝐹𝑔𝑙𝑚

        (8) 

In this context, 𝑅𝑆𝑆𝑔𝑤𝑟 represents the RSS for a GWR model, 𝑅𝑆𝑆𝑔𝑙𝑚 signifies the RSS for a global 

model, while 𝐷𝐹𝑔𝑤𝑟 and 𝐷𝐹𝑔𝑙𝑚 denote the degrees of freedom for the GWR and global models, 

respectively. 

 

4.6 Evaluation of Predicted Pattern 

To test the prediction accuracy of GWR in predicting iNDVI, three output indices, namely, MAE, 

RMSE, R², NSE, and KGE. In addition, the spatial mapping of the observed iNDVI and the 

predicted iNDVI was mapped for assessment. 

 

5.0 Results and Discussion 

5.1 Spatial Variability of Rainfall in PM 

Spatial rainfall variability in PM reveals significant patterns characterized by positive spatial 

autocorrelation and clustering. The Moran’s I value of 0.282 indicates a moderate level of spatial 

autocorrelation, suggesting that areas with similar rainfall patterns are geographically clustered 

rather than randomly distributed. This clustering is further supported by Geary’s C statistic of 

0.7107, which reflects a tendency for nearby locations to exhibit similar rainfall characteristics. 

Such local spatial relationships indicate that certain regions experience consistent rainfall patterns. 

Furthermore, the mean, median, SD, skewness, and CV were analyzed and mapped to assess spatial 

heterogeneity in rainfall distribution, as illustrated in Figure 3. The mapping of mean and median 

monthly rainfall distributions reveals apparent differences between the eastern and western sections 

of the study area. Mean rainfall values span from 174 to 338 mm, with specific locations exhibiting 
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notably higher averages. Likewise, median rainfall ranges from 162 to 273 mm, with the northern 

region consistently demonstrating greater median values than other areas. 

The northern and northeastern regions of PM receive the highest levels of rainfall, with 

mean values surpassing 300 mm. As one moves southward and westward, rainfall amounts 

gradually decline. In contrast, the central and southern regions experience relatively lower rainfall, 

generally between 200 mm and 250 mm. The northern and northeastern areas also display the 

highest median rainfall, exceeding 260 mm, while median values decrease in the southern and 

western directions, typically ranging from 180 mm to 220 mm. This distribution underscores 

significant regional disparities in mean and median monthly rainfall, with the northern and 

northeastern regions receiving substantially more rainfall than other parts of the PM. The SD values 

vary from 67 to 273 mm, reflecting differences in rainfall variability across the landscape, with 

some regions experiencing more erratic patterns than others. Skewness values, ranging from 0.03 

to 2.21, indicate the asymmetry of rainfall distribution; positive skewness signifies a longer tail on 

the right side of the distribution, indicating occasional heavy rainfall events, whereas negative 

skewness suggests a longer left tail, denoting more frequent lighter rain. CV values range from 0.35 

to 0.96, with lower values reflecting a more uniform rainfall distribution and higher values 

indicating more significant variability. Overall, the spatial analysis reveals a concentration of higher 

mean, SD, skewness, and CV values in the northeastern region, highlighting areas more susceptible 

to variable and potentially intense rainfall patterns. In contrast, the northern region consistently 

shows higher median rainfall values, suggesting a tendency for more reliable and consistent rainfall 

amounts in that area. 
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Figure 3. Spatial distribution of mean, median, SD, skewness, and CV of mean monthly rainfall in 

PM. 

 

5.2 ENSO Influence Rainfall Spatial Pattern 

The spatial distribution of cumulative rainfall during each ENSO event is presented in Figure 4. 

Similar to the findings by Muhammad et al. (2020) and Wong et al. (2016), it was visually observed 

that the spatial pattern of the cumulative rainfall during each ENSO event showed a high degree of 

variability across PM. For example, during the extreme El Niño events of 2015/2016, higher 

rainfall was observed along the western and northwestern coast, and a lower rainfall gradient was 

observed towards the southern region. On the other hand, during the strong La Niña events of 

2010/2011, a similar high localized rainfall was observed in the central-southern region and the 

northeastern area. A gradient of lower rainfall was observed towards the northwestern and 

southwestern coasts. The spatial pattern of rainfall can be characterized by spatial dispersion, 

randomness, or clustering. The Moran’s I statistic was computed for rainfall during different ENSO 

events (Soibam et al., 2015). Moran’s I values are positive in each case, suggesting a spatial 

autocorrelation in rainfall distribution for each event. For extreme El Niño 2015/2016, it is 0.0946; 
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for strong La Niña 2010/2011, it is 0.2273. The positive values indicate that nearby locations tend 

to have similar values for each variable. The expected Moran’s I values under the assumption of 

spatial randomness are consistently close to zero, and the standard deviations are relatively small. 

Additionally, the p-values associated with the observed Moran’s I for all variables are 0, indicating 

that the spatial autocorrelation is statistically significant. Similar to the findings by Soibam et al. 

(2015), these results collectively suggest a notable spatial structure in the rainfall distribution 

during each ENSO event, emphasizing the importance of considering spatial relationships when 

analyzing these environmental variables. 

 

 

Figure 4. Spatial distribution of cumulative rainfall during the selected ENSO events. 

 

5.3 Ordinary Least Squared Regression 

The ANOVA test compared the RSS from an OLS regression with those from a GWR. This test is 

based on the methodology described by Brunsdon et al. (2002). The output provides several key 

statistics. The F-statistic is 2.6623, which measures the ratio of the variance explained by the model 

to the unexplained variance. The degrees of freedom (df) are provided for both the GWR model 

(df1 = 167.000) and the residuals (df2 = 89.299). These values are calculated based on the number 

of data points and effective parameters used in the GWR model, with an adjustment for the 

comparison. The p-value is 4.156e-07, indicating the probability of observing an F-statistic as 

extreme as 2.6623 under the null hypothesis that the GWR model does not significantly improve 

the fit compared to the OLS model. The very small p-value suggests that the GWR model 
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substantially improves the fit. The alternative hypothesis is that the GWR model explains more 

variance than the OLS model, which is supported by the small p-value. The sample estimates 

provide the sum of squares of the residuals for both the OLS model (SS OLS residuals = 197.39475) 

and the GWR model (SS GWR residuals = 74.14394). These values measure the total variance that 

each model fails to explain. The results of the ANOVA test indicate that the GWR model 

significantly reduces the RSS compared to the OLS model. The F-statistic of 2.6623, combined 

with the extremely small p-value, provides strong evidence against the null hypothesis, suggesting 

that the GWR model captures spatial variability in the data more effectively than the OLS model. 

The substantial reduction in the RSS further supports this conclusion, demonstrating that the GWR 

model provides a better fit by accounting for local variations in the relationship between the 

variables. 

 

5.4 Weighting Function Comparison 

Several performance metrics were assessed to compare the effectiveness of different weighting 

functions in GWR. These metrics include the AIC, AICc, quasi-global R², RSS, traceS, and sigma 

(model: traceS). The findings are summarized in Table 1. The evaluation of weighting functions 

across different ENSO events reveals distinct preferences for model performance. Both weighting 

functions exhibit suboptimal performance for the El Niño 2015/2016 event. Still, the Gaussian 

function holds a slight edge with an AIC of 398.48 compared to 434.12 for the Bisquare, although 

both display low Quasi-global R² values (0.63 for Gaussian and 0.48 for Bisquare), indicating 

inadequate model fit. In the La Niña 2010/2011 event, the performance of both weighting functions 

declined, with the Bisquare function marginally outperforming the Gaussian, achieving an AIC of 

442.01 compared to 505.69. However, both exhibit low Quasi-global R² values (0.10 for Gaussian 

and 0.52 for Bisquare), highlighting insufficient model performance. 

The choice of weighting function significantly influences model performance, particularly 

during different phases of the ENSO, such as El Niño and La Niña events. The Gaussian weighting 

function proved more effective during the El Niño 2015/2016 event, likely due to its bell-shaped 

curve, which assigns higher weights to nearby observations while diminishing the influence of 

more distant data points. This characteristic allows the Gaussian function to capture the more 

homogeneous climatic conditions often associated with El Niño, where broad-scale influences 

create a more precise signal in the data. The smoothing effect of the Gaussian function helps 
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stabilize estimates and manage extreme weather outliers, contributing to a lower AIC of 398.48 

compared to 434.12 for the Bisquare function, alongside a marginally higher Quasi-global R² value 

of 0.63 versus 0.48. Conversely, the Bisquare weighting function demonstrated superior 

performance during the La Niña 2010/2011 event, as indicated by its lower AIC of 442.01 

compared to the Gaussian’s 505.69. This effectiveness can be attributed to the Bisquare function’s 

robustness against outliers; it assigns lower weights to observations that deviate significantly from 

the fitted model. During La Niña, the increased variability and potential outliers, particularly in 

regions experiencing extreme rainfall, can affect model estimates, making the Bisquare function 

more suitable for capturing localized effects. Despite both weighting functions exhibiting low 

Quasi-global R² values, the Bisquare’s value of 0.52 outperforms the Gaussian’s 0.10, suggesting 

that it better models the specific responses associated with La Niña conditions. Overall, the 

Gaussian weighting function proves more effective for the El Niño 2015/2016, while the Bisquare 

weighting function slightly outperforms the La Niña 2010/2011 event. Therefore, Gaussian was 

used for El Niño 2015/2016, and Bisquare was used for La Niña 2010/2011 in the subsequent 

analysis. 

 

Table 1. Comparison of weighting function under different studied ENSO events. 

ENSO Weighting 

Function 

AIC AICc Quasi-

global R2 

RSS Sigma (model: 

traceS) 

El Niño 

2015/2016 

Gaussian 398.48 523.88 0.63 74.14 0.820 

Bisquare 434.12 493.45 0.48 104.39 0.890 

La Niña 

2010/2011 

Gaussian 505.69 515.14 0.10 189.63 1.080 

Bisquare 442.01 535.00 0.52 101.48 0.920 

 

5.5 Spatial Patterns of The NDVI – Rainfall Relationship 

Figure 5 represents local R2 values obtained from GWR models for different ENSO events. It 

measures the proportion of the variance in the dependent variable explained by the GWR model at 

each location. The local R2 values obtained from GWR models for different ENSO events provide 

information into the spatial variability of the relationship between NDVI and rainfall. The spatial 

pattern of local R2 values (Figure 5(a)) shows notable differences between the El Niño (2015/2016) 

and La Niña (2010/2011) events. For the El Niño event, local R2 values are generally higher, with 
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many areas indicating values closer to 0.6 to 0.8. This suggests that GWR models explain a 

significant portion of the spatial variability in these regions during a strong El Niño. The relatively 

uniform distribution of reduced rainfall and its effects on vegetation, as measured by the NDVI, 

allowed the GWR model to leverage local relationships effectively. During El Niño, the climatic 

conditions tend to be more consistent across larger areas, facilitating stronger correlations between 

NDVI and rainfall. 

In contrast, the La Niña event map shows more widespread areas with slightly lower local 

R2 values. Some areas also show a lower explanatory power, with local R2 values dropping below 

0.4 in some regions. The extreme rainfall associated with La Niña leads to more localized and 

variable effects on vegetation, making it more challenging for the GWR model to identify 

consistent relationships across different regions. As such, the variability in rainfall and its impact 

on NDVI during La Niña conditions may be more fragmented, resulting in less effective model 

performance. The boxplot (Figure 5(b)) summarises local R2 values for both ENSO events. The 

median local R2 for the El Niño event appears higher than that for La Niña, suggesting that the 

GWR model explained more spatial variability during El Niño conditions. The interquartile range 

for both events is similar, but the El Niño boxplot shows a slightly higher spread towards the upper 

end. Both distributions have a few outliers with negative R2 values, indicating regions where the 

model fit was poor. 

The lower R² values observed for the GWR model, particularly during La Niña events, stem 

from its sensitivity to local variations. While GWR captures spatial heterogeneity, it can introduce 

noise, especially in regions with highly variable NDVI-rainfall relationships, as seen during La 

Niña, where extreme rainfall variability causes fragmented impacts on vegetation, making it 

challenging to establish consistent relationships. Additionally, GWR may face issues such as 

multicollinearity, spatial autocorrelation, and insufficient data in certain regions, further reducing 

its explanatory power. Lessani and Li (2024) introduce the Similarity and Geographically Weighted 

Regression (SGWR) model to address these limitations. This enhances GWR by integrating a 

weight matrix that combines data attribute similarity with geographic proximity, improving 

performance across various statistical measures. Similarly, Liu et al. (2024) propose an improved 

semi-parametric Geographically Weighted Regression (ISGWR) approach, which modifies the 

spatial weight matrix to explain heterogeneity and non-stationarity in spatial relationships better, 

further enhancing model performance. Although beyond the scope of the current work, these 
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improved versions of GWR offer promising potential to address its limitations and enhance model 

performance. 

 

 
(a) 

 
(b) 

Figure 5. (a) Spatial distribution of local R2 patterns, and (b) boxplot of local R2 for the respective 

ENSO events. Low values suggest inadequate model performance and may indicate the potential 

absence of variables in the model. 
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Additionally, incorporating variables like soil type, land use, or elevation could reduce 

unobserved spatial heterogeneity while testing alternative spatial weighting functions in GWR 

could enhance local pattern capture. Pre-processing techniques such as spatial smoothing or 

temporal aggregation may also reduce variability from extreme weather events and improve model 

performance. Nonetheless, the overall findings affirm that GWR captured the spatial variation of 

climate impacts more effectively during the El Niño event than during La Niña in PM, likely due 

to the more uniform and predictable climatic conditions associated with El Niño compared to the 

variability and extremes introduced by La Niña. 

The observed spatial variability of rainfall coefficients across PM during the El Niño 

2015/2016 and La Niña 2010/2011 showed a negative value at 64% and 50% grid points, 

respectively (Figure 6). During El Niño events 2015/2016, a negative relationship was observed in 

the PM’s northern, central-west and western regions. This indicates a non-linear relationship 

between rainfall and NDVI spatially across PM. The findings suggest that, with stronger El Niño 

events, an increase in rainfall is associated with a decrease in NDVI, implying a negative 

relationship in these regions. This is because the drier-than-average conditions in these regions 

typically result in reduced relative rainfall that is insufficient to cater to the need for vegetation 

growth (Tan et al., 2021; Tangang et al., 2017). High maximum temperatures, especially with 

reduced rainfall during El Niño events, can contribute to drought stress (Tan et al., 2021). Even 

with increased rainfall, if high temperatures persist, the water may evaporate quickly, reduce soil 

moisture, and enhance evapotranspiration, leaving less water available for vegetation. Previous 

work by Luo et al. (2018) also reported a highly uncertain photosynthesis reduction from rainforests 

during El Niño events 2015/2016 event. Besides, plants have different temperature thresholds 

beyond which their physiological processes are negatively affected (Khor et al., 2021).  
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Figure 6. Rainfall coefficients during the selected ENSO events. The coefficients related to rainfall 

illustrate the extent of change in NDVI for a spatial unit with a corresponding increase in a spatial 

unit of rainfall. 

 

 These findings highlight the vulnerability of vegetation to the combined effects of reduced 

relative rainfall and high maximum temperatures, which exacerbate drought stress by reducing soil 

moisture and increasing evapotranspiration. This relationship highlights the importance of adaptive 

agricultural policies, including promoting drought-resistant crop varieties and adjusting planting 

schedules to mitigate the impacts of El Niño. For instance, Evamoni et al. (2023) identified drought-

tolerant rice genotypes (MR185, MR211, MR253, MR269, MR284, MR303, and MR307) 

exhibiting superior biochemical responses, such as increased levels of total soluble sugar, proline, 

catalase, and ascorbate peroxidase, thereby advancing the application of these markers to improve 

drought tolerance and mitigate water scarcity in rice production. Similarly, Shamsudin et al. (2016) 

developed drought-tolerant lines of the Malaysian rice cultivar MR219 by pyramiding three 

drought-yield QTLs, achieving yield gains of 903–2523 kg ha−1 under drought stress, which 

contributes to sustainable agriculture and enhances food security in the face of water scarcity and 

climate change. Additionally, the results can inform ecosystem management strategies, including 

prioritizing reforestation or conservation efforts in drought-prone areas and enhancing water 

resource management to support vegetation growth under extreme climatic conditions. Therefore, 

reforestation in Malaysia, guided by government initiatives to restore degraded lands and to 

improve forest cover for biodiversity conservation and climate regulation, should prioritize 



 

23 
 

drought-prone areas to maximize ecological and climate resilience while actively involving local 

communities to ensure sustainability and foster shared responsibility for forest preservation 

(Saharudin et al., 2024). By integrating these findings into policy frameworks, stakeholders can 

better address the challenges posed by ENSO-induced variability in agriculture and ecosystems in 

the region. 

Nonetheless. a positive relationship was observed in the eastern and southern regions during 

the El Niño events. This might be because the southern region has low-lying soil types, such as 

peat soil, with better water retention capabilities; therefore, increased rainfall during El Niño events 

could improve soil moisture levels, supporting positive vegetation growth. While El Niño events 

are generally associated with warmer temperatures, the southern region might experience 

temperatures conducive to plant growth without reaching stress levels. Meanwhile, in the eastern 

region of PM, a positive relationship between these variables can be attributed to the proximity to 

the South China Sea influences local climatic conditions, leading to localized weather changes 

during El Niño that enhance rainfall. This additional moisture is vital for vegetation, improving soil 

conditions and nutrient availability, promoting plant growth and elevating NDVI values. 

Furthermore, the eastern region’s diverse ecosystems are well-adapted to seasonal variations, 

allowing them to capitalize on the increased rainfall effectively. When this rainfall coincides with 

critical growth periods for vegetation, the impact on NDVI becomes even more pronounced. 

On the other hand, a positive association was observed during the La Niña events compared 

to the El Niño (Figure 4). However, the study identified significant variations in the rate of positive 

change, highlighting a localized decrease in the north-western coast, northeast, central region, and 

southeast coast. Certain localized areas may experience negative responses to La Niña conditions. 

Interestingly, the northeastern region showed a negative response, even though these regions 

consistently receive high rainfall, particularly during the NEM. This indicates that there may be a 

point of saturation where additional rainfall has diminishing returns in terms of promoting 

vegetation growth, as previously reported by Li et al. (2019). Once the soil is saturated, excess 

water may also lead to runoff and flooding rather than being absorbed by vegetation, limiting the 

positive impact on NDVI. Most of the vegetation in this area may reach a threshold beyond which 

additional water does not contribute substantially to their growth. Besides, the irregular or sporadic 

extreme rainfall might not support sustained vegetation growth as effectively as evenly distributed 
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rainfall in this area (Silveira et al., 2013). The sandy soils along the northeastern coast may drain 

water more quickly, influencing how effectively it utilizes increased rainfall for vegetation growth. 

These findings highlight the necessity of adaptive agricultural and ecosystem management 

policies, such as optimizing water management, promoting soil conservation, and selecting 

vegetation suited to local soil and hydrological conditions to enhance resilience to irregular and 

extreme rainfall. The Muda Irrigation Scheme, managed by MADA, exemplifies sustainable water 

management by ensuring water availability for paddy cultivation while addressing food security 

through effective governance and environmental protection, offering a replication model in 

similarly affected PM areas (Man et al., 2023). Nasir Ahmad et al. (2024) emphasize that addressing 

the challenges of extreme rainfall in agriculture requires a comprehensive approach. Soil 

conservation practices, such as contour farming, terracing, and cover cropping, are vital for 

minimizing erosion and enhancing water retention, especially in high-elevation rainfall areas in the 

central region. Effective drainage systems, including ditches, drains, and retention basins, help 

manage excess water, mitigating flooding and protecting crops. Rainwater harvesting reduces 

erosion during heavy rains while providing an additional water source during dry periods. Crop 

rotation and diversification improve soil stability and sustain productivity by utilizing varied root 

structures and nutrient requirements. Mulching shields soil surfaces from raindrop impact, retains 

moisture and stabilizes soil conditions during variable rainfall. Other than that, educating farmers 

on sustainable practices will fosters better soil management, crop selection, and erosion control, 

enhancing resilience to extreme rainfall conditions. 

During the El Niño events, high rainfall variability can lead to localized ecological 

responses, impacting vegetation dynamics differently across the landscape. A positive correlation 

between NDVI and rainfall may prevail in areas with consistent and abundant rain, indicating that 

increased rainfall fosters vegetation growth. Conversely, in regions where rainfall is less reliable or 

experiences significant fluctuations, the NDVI-rainfall relationship may be more complex, with 

vegetation responding differently to other factors. This observed variability underscores the 

importance of considering local factors and heterogeneity when examining the NDVI-rainfall 

relationship. Even though a positive rainfall coefficient was observed during La Niña events, the 

magnitude of change can also be different. The findings showed that a region-specific 

understanding of ecosystem dynamics is required to understand the NDVI-rainfall relationship, as 
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high rainfall variability across PM contributes to the diverse ecological responses observed in the 

study. 

 

5.6 Performance of The Predicted Pattern 

The spatial distribution of iNDVI, derived from GWR for the selected ENSO events (El Niño 

2015/2016 and La Niña 2010/2011), shows distinct patterns across the study region (Figure 7). 

During the extreme El Niño event, the iNDVI values predominantly range from 6 to 10. The map 

reveals that most areas are between 8 and 10, with some regions showing slightly lower iNDVI 

values closer to 6, suggesting a moderate level of vegetation stress likely due to the warmer and 

drier conditions typically associated with El Niño. In contrast, the spatial distribution during the 

strong La Niña event shows generally higher iNDVI values, with a range predominantly between 

8 and 11. In the central and northern regions, iNDVI values reach 11. This suggests that vegetation 

health and productivity were comparatively higher during La Niña, consistent with the cooler and 

wetter conditions usually linked to La Niña phases. The spatial contrast between these two ENSO 

events highlights the impact of climatic variations on vegetation, with iNDVI values indicating 

stronger vegetation response and potentially improved productivity during La Niña compared to El 

Niño. 

The statistical evaluation of observed NDVI against iNDVI for the studied ENSO events 

highlights significant differences in model performance across several key metrics (Table 2). The 

MAE was 0.5 for the El Niño event, compared to 0.58 for La Niña, indicating that the predicted 

NDVI values during El Niño were closer to the observed values on average. Additionally, the 

RMSE was lower during El Niño at 0.66, while it was 0.77 for La Niña, suggesting that the model’s 

predictions were more precise during the El Niño period, reflecting less deviation from the 

observed values. Furthermore, the R2 was 0.63 for El Niño and 0.52 for La Niña, indicating that 

the model explained a more significant proportion of the variance in observed NDVI during El 

Niño conditions. The NSE metric, which assesses the predictive power of hydrological models, 

showed a value of 0.63 for El Niño and 0.52 for La Niña, reinforcing that the model’s predictions 

were more effective during the El Niño event. Lastly, the KGE was calculated at 0.6 for El Niño 

and 0.5 for La Niña, confirming the model’s superior performance in capturing the relationship 

between observed NDVI and iNDVI under El Niño conditions. These metrics suggest that the 

model better captured the relationship between observed NDVI and iNDVI during the El Niño 
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event than the La Niña event, underscoring its enhanced accuracy and reliability under varying 

climatic conditions. 

 

 

Figure 7. Spatial distribution of iNDVI during the selected ENSO events. 

 

Table 2. Statistical evaluation of the observed NDVI against iNDVI. 

Metric El Niño (2015/2016) La Niña (2010/2011) 

MAE 0.5 0.58 

RMSE 0.66 0.77 

R² 0.63 0.52 

NSE 0.63 0.52 

KGE 0.6 0.5 

 

6.0 Conclusion 

GWR is a dynamically adaptive tool for detecting geographical relationships, leveraging local 

information to achieve a more refined distribution. This results in predicting a smoother pattern of 

NDVI response, explaining a higher variance and effectively mitigating autocorrelation in the 

residuals. However, when faced with extreme climate variability, such as an ENSO event, the 

intricate mechanism influencing the relationship between NDVI and rainfall must consider 

additional factors with a strong local impact, such as soil type, human disturbances (urbanization), 
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vegetation thresholds during extremely wet and warm periods, and unique local climatic conditions. 

These localized variations highlight that the spatial patterns of NDVI exhibit different magnitudes 

of positive or negative correlations with rainfall in various PM parts. The study suggests that while 

rainfall predominantly determines vegetation growth, other factors may lead to negative influences. 

Specifically, the southern parts of the PM generally display stronger correlations, likely attributed 

to the abundance of water, low-lying areas, and diverse plant species that can adapt to contrasting 

warmer conditions during El Niño and wetter conditions during La Niña. These findings showed 

that the GWR model can be used for a larger regional scale across PM under the influence of El 

Niño. Still, a more specific localized region should be identified to simulate a homogeneous 

(increasing or decreasing) relationship under the influence of La Niña. 

In tropical regions like PM, GWR allows regression parameters to vary spatially, revealing 

diverse temporal and spatial patterns in the direction and strength of the NDVI-rainfall correlation. 

The study highlights this relationship’s spatial heterogeneity and non-stationarity by mapping local 

diagnostics. These findings emphasize the importance of integrating adaptive agricultural 

strategies, sustainable water management practices, and targeted ecosystem conservation efforts to 

enhance resilience against drought and extreme rainfall, safeguarding food security and promoting 

ecological sustainability amid climate variability. The findings indicate that GWR is a practical 

alternative to OLS modelling in areas with heterogeneity sensitive to environmental and climate 

variations. The GWR approach provides superior predictions, reduces autocorrelation in the 

residuals, and highlights local variations. These initial findings, focused on optimizing the GWR 

model, will serve as a foundation for subsequent analyses incorporating additional variables to offer 

a more comprehensive view of the factors influencing vegetation behaviour. Physical variables 

(e.g., soil type, land use, elevation) and climate variables (e.g., wind speed, temperature, solar 

radiation, humidity) are currently being integrated to address the complexities introduced by high 

variability scenarios in PM. Future work will extend this analysis by incorporating these variables 

into the GWR model, enhancing understanding of their influence on NDVI responses and providing 

a more holistic view of the complex interactions shaping vegetation dynamics in tropical regions 

like PM. Furthermore, the different NDVI and rainfall datasets can be compared to evaluate the 

robustness and consistency of the findings. 
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