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Abstract – This study evaluates the influence of the 2007 strong La Niña event on tropical greening in Borneo by using 

geographically weighted regression (GWR) to assess spatial variations in vegetation response based on remotely sensed NDVI 

data. Moran’s I value, ranging from 0.012 to 0.034, indicates low positive spatial autocorrelation and significant spatial 

clustering of rainfall across Borneo, underscoring the importance of incorporating spatial factors in the analysis. The ANOVA 

test shows that each monthly GWR model significantly outperforms the Ordinary Least Squares (OLS) model (F > 1, p < 0.05), 

with September, October, and December exhibiting the strongest fit (Quasi-global R²: 0.2744, 0.3125, 0.2899; RSS: 0.2626, 

0.2539, 0.2785). During the Northeast Monsoon (NEM), the rainfall-NDVI relationship is strongest, with maximum R2 values 

peaking at 0.74 in December, followed by 0.54 in February and 0.27 in November. Central and southern Borneo show the 

highest correlations, indicating that rainfall is a key driver of vegetation growth. During the Southwest Monsoon (SWM), the 

rainfall-NDVI relationship weakens, with maximum R2 dropping to 0.36 in August before rising to 0.49 in September. The 

lowest R2 (0.00–0.04) in northern and eastern Borneo reflects reduced rainfall influence due to orographic rain shadow effects 

from the Crocker Range and East Kalimantan highlands. Western Borneo’s peatlands and riparian zones retain moisture and 

sustain vegetation, while degraded forests, mixed land use, and plantations in the north and east show more significant NDVI 

fluctuations due to lower soil moisture retention. The predicted NDVI values during the 2007 La Niña event ranged from 0.5 

to 0.9, with the model effectively capturing seasonal and spatial variations across Borneo, particularly during peak rainfall. 

However, it missed localized fluctuations and smaller-scale variations in February and November due to elevation, soil and 

vegetation type, and extreme rainfall variability. These findings suggest that local factors mediate La Niña’s influence on 

tropical greening, emphasizing the importance of spatial analysis in understanding climate-vegetation interactions under 

extreme conditions. 
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1.0 Introduction 

Tropical ecosystems are highly sensitive to variations in climate, particularly those influenced by 

large-scale climatic phenomena such as the El Niño-Southern Oscillation (ENSO) (Jamaludin & 

Nor, 2024). La Niña, the cold phase of ENSO, is characterized by intensified rainfall, which can 

significantly impact vegetation dynamics (Diem et al., 2018). In regions like Borneo, where 

tropical forests and ecosystems rely heavily on seasonal rainfall patterns, La Niña events may alter 

vegetation health, productivity, and growth (Suepa et al., 2016). Understanding these impacts is 

essential for managing biodiversity, assessing environmental changes, and predicting future 

climate variability. Borneo, the third-largest island in the world, lies at the heart of Southeast Asia’s 

tropical belt and experiences a monsoon-driven climate (Sa’adi et al., 2024a). Its complex 

geography, varied topography, and rich biodiversity make it an ideal location for studying the 

effects of extreme climate events like La Niña (Zhang et al., 2024a). The Northeast monsoon 

(NEM), from November to March, brings substantial rainfall, while the Southwest monsoon 

(SWM), from May to September, is typically drier (Sa’adi et al., 2021). Consequently, La Niña’s 

potential to enhance or redistribute rainfall during these monsoon periods could profoundly 

influence vegetation patterns across the island. 

Despite the availability of remotely sensed vegetation data like the Normalized Difference 

Vegetation Index (NDVI) (Murakami et al., 2024) for monitoring vegetation health and dynamics, 

there is a significant gap in modeling the non-stationarity of climate influences on vegetation across 

Borneo. While NDVI provides a valuable understanding of vegetation vigor, productivity, and 

stress, its spatial and temporal responses to climate variability, particularly during La Niña events, 

vary due to local environmental factors such as soil moisture, topography, and land use. These 

localized influences create spatial heterogeneity that traditional modeling approaches often fail to 

capture. Previous work by Susilo et al. (2013), Tangang et al. (2017), Zhang et al. (2024b), and 

Pang et al. (2018) analyzed extreme rainfall during La Niña events using observational data and 

methods such as time series analysis, composite analysis, correlation analysis, and segmented 

regression. While these approaches provide a valuable understanding of past rainfall variability, 

their reliance on historical data and statistical methods may limit predictive capability. Additionally, 

composite analysis and segmented regression can introduce uncertainties, especially when small 

sample sizes or trend breakpoints are subjectively determined, potentially leading to less robust 

conclusions.  
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However, geographically Weighted Regression (GWR) (Yang et al., 2021) provides a more 

effective method by accounting for these local variations, making it ideal for examining the 

complex and non-stationary relationship between rainfall and vegetation in regions like Borneo. 

Previous studies have applied GWR to environmental processes in Borneo, including aboveground 

biomass distribution (Van der Laan et al., 2014) and fire density patterns (Wee et al., 2024). 

However, no studies have used GWR to examine regional rainfall-NDVI relationships. Given 

Borneo’s hydroclimatic sensitivity, this study addresses a key gap by applying GWR to NDVI and 

rainfall data from the 2007 strong La Niña event, recognized for its significant impact and well-

documented anomalies. Strong La Niña events are less common, occurring irregularly every 10 to 

15 years, making the 2007 event one of the most recent and relevant strong cases for study. 

Analyzing a strong event enhances statistical clarity and reduces uncertainties in GWR analysis, 

enabling a more reliable assessment of rainfall-driven tropical greening across Borneo. The 

selection of the 2007 strong La Niña event ensures a meaningful understanding of climate-

vegetation interactions under extreme climatic conditions rather than relying solely on recent 

occurrences.  

By incorporating high-resolution NDVI data and rainfall estimates, this study offers a 

comprehensive assessment of the event’s impact on vegetation dynamics in Borneo, emphasizing 

the critical role of spatially explicit models in understanding the effects of extreme climate events 

on tropical ecosystems. The findings of this study will contribute to improving the prediction of 

future climate impacts on tropical forests and other ecosystems in Southeast Asia, providing a 

deeper understanding of how La Niña events shape vegetation dynamics in the context of a 

changing climate. Furthermore, this work emphasizes the importance of incorporating spatially 

explicit data and techniques in ecological studies, ensuring that the unique environmental 

conditions of each region are properly accounted for in climate-vegetation models.  

 

2.0 Study Area 

Borneo, the third-largest island in the world, is located at the center of Southeast Asia and is 

characterized by its rich biodiversity and complex ecosystems (Allen & Allan, 2024) (Figure 1). 

The island is divided into three political regions: Malaysia (Sabah and Sarawak), Brunei, and 

Indonesia (Kalimantan), each with distinct geographical features. Borneo’s tropical climate is 

classified into ‘Wet and cold’, ‘Wet and hot’, and ‘Dry and hot’ (Sa’adi et al., 2024a), which was 
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heavily influenced by the monsoon system, with two primary monsoons: the NEM (from 

November to March) that brings heavy rainfall and the SWM (from May to September) that is 

typically drier. Borneo’s diverse topography, which includes coastal plains, mountainous regions, 

and extensive tropical rainforests, creates a wide range of microclimates and ecological zones 

(Fujiki et al., 2017). This variability makes Borneo an ideal study area for investigating the impacts 

of climate phenomena such as La Niña on vegetation dynamics. The island’s ecosystems are 

susceptible to changes in rainfall patterns, and its vast rainforests are home to unique species and 

critical ecosystem services (O’Brien et al., 2024). Understanding how extreme climate events like 

La Niña influence vegetation across such diverse landscapes is crucial for assessing the 

vulnerability of these ecosystems to climate variability and informing conservation and 

management strategies. The complex interaction between climate, topography, and land use in 

Borneo presents a valuable opportunity to explore spatially explicit models, such as GWR, to assess 

local variations in vegetation responses to changes in rainfall. 

 

 

Figure 1. Study area of Borneo with 961 grid points of gridded-based satellite Climate Prediction 

Center Morphing technique (CMORPH) rainfall dataset and elevation based on Shuttle Radar 

Topography Mission (SRTM) at 90 m spatial resolution 
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3.0 Data and Sources 

3.1 Gridded-based satellite CMORPH rainfall data 

The CMORPH is a satellite-based dataset that provides high-resolution global rainfall estimates 

derived by morphing passive microwave (PMW) satellite observations across time and space to 

create a continuous, gridded rainfall product (Li et al., 2024). Developed by the National Oceanic 

and Atmospheric Administration (NOAA), CMORPH utilizes data from multiple geostationary and 

polar-orbiting satellites, ensuring comprehensive coverage, especially over data-scarce regions 

such as tropical rainforests. The technique combines PMW rainfall data with infrared (IR) 

observations to create a rainfall product with a resolution of 0.25° x 0.25° latitude/longitude and a 

3-hour temporal resolution, providing fine-grained insights into precipitation patterns. For this 

study, the CMORPH dataset serves as the primary source of rainfall information across Borneo 

during the 2007 La Niña event. The high spatial and temporal resolutions of this dataset are 

particularly valuable for capturing localized rainfall events and evaluating rainfall impacts on 

vegetation across diverse microclimates and topographies in Borneo. In this context, CMORPH 

rainfall data enables a detailed assessment of the spatial and temporal relationships between 

precipitation and vegetation response, precisely measured through NDVI, which can reflect both 

immediate and cumulative vegetation responses to rainfall fluctuations. 

While CMORPH provides valuable information, certain limitations are acknowledged in 

this study. The lack of direct ground validation can affect rainfall estimates from satellite data, 

especially in dense tropical regions where radar measurements are scarce or non-existent (Sabbaghi 

et al., 2024). Additionally, CMORPH may have reduced accuracy during intense, localized 

precipitation events due to inherent limitations in spatial resolution (Akbas & Ozdemir, 2024). 

These limitations may introduce biases in rainfall estimates, potentially affecting the accuracy of 

NDVI-rainfall relationships. The lack of ground validation could lead to over- or underestimation 

of rainfall, influencing the strength of correlations observed in the analysis. 

Additionally, reduced accuracy during extreme rainfall events may impact the detection of 

peak NDVI responses, limiting the precision of spatial variability assessments. However, 

CMORPH remains a widely used dataset in hydrometeorological research for regions with limited 

in-situ rainfall observations (Dayal et al., 2024; Han et al., 2024), and its integration with GWR 

modeling enables this study to capture spatial variability in rainfall-vegetation relationships during 

an extreme climate event. The dataset’s strengths in tracking rainfall across monsoon phases and 
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complex topographies make it well-suited for understanding how large-scale climate phenomena 

influence tropical greening. However, this study did not conduct ground-based validation due to 

data availability constraints across multiple national jurisdictions, which pose challenges in 

accessing consistent and reliable station data. Future validation efforts could incorporate station-

based rainfall measurements from regional meteorological agencies to enhance the accuracy of 

satellite-derived estimates and improve the reliability of the findings. 

 

3.2 Normalized difference vegetation index (NDVI) 

NDVI is a widely used remote sensing metric that measures vegetation health, density, and 

productivity by capturing variations in plant greenness (Zhu et al., 2024). Calculated from red and 

near-infrared (NIR) reflectance, it leverages that healthy vegetation absorbs visible red light for 

chlorophyll production and reflects NIR light. NDVI values range from -1 to +1, with higher 

positive values (0.2–0.9) indicating dense vegetation, values near zero representing sparse 

vegetation or bare soil, and negative values corresponding to non-vegetated surfaces like water or 

snow. In this study, NDVI data are used to examine vegetation responses to rainfall fluctuations 

during the 2007 strong La Niña event, a period of increased precipitation that potentially enhances 

tropical greening across Borneo’s diverse ecological zones and elevation gradients. This research 

uses NDVI data from the MODIS satellite’s Vegetation Indices Monthly L3 Global 1km product 

(MOD13A3), which provides monthly NDVI at a 1 km resolution (Yuan et al., 2024). This high 

resolution enables detailed analysis of vegetation responses across Borneo, capturing dynamics 

during key monsoon periods and responses to rainfall peaks from the 2007 La Niña event. 

While NDVI is a valuable indicator of vegetation health, it has limitations: it primarily 

reflects green cover, which may overlook diverse vegetation types in layered forests or non-green 

biomass (Güler & Turgut, 2024). Atmospheric interference, sensor limitations, and mixed-pixel 

effects in complex landscapes can impact accuracy, and in dense tropical forests, canopy shadows 

and undergrowth may lead to underestimation of vegetation health (Zheng & Yu, 2024). 

Nonetheless, NDVI data provides critical insights into vegetation’s spatial and temporal dynamics 

across Borneo during the 2007 La Niña event. Integrating NDVI into a GWR framework improves 

the understanding of spatially varied vegetation responses, enhancing insights into tropical 

ecosystems’ reactions to large-scale climate anomalies (Wang et al., 2024). The Borneo climate, 

heavily influenced by La Niña events that often bring wetter conditions (Tan et al., 2021), was 
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examined for the 2007 strong category event to assess the NDVI-rainfall relationship (Khor et al., 

2021). NDVI was integrated with the duration of these events to measure vegetation productivity. 

 

4.0 Methods 

4.1 Test of spatial autocorrelation 

Moran’s I is a statistical measure used to assess spatial autocorrelation in geographic data (Vásquez 

et al., 2024). It quantifies the degree to which similar values cluster in space, offering insights into 

the spatial structure of a variable. The index is particularly useful in identifying whether nearby 

locations are more likely to exhibit similar characteristics (positive spatial autocorrelation) or 

dissimilar characteristics (negative spatial autocorrelation) or if the variable is randomly distributed 

across space (no spatial autocorrelation). The equation for Moran’s spatial autocorrelation 

coefficient, denoted as I, is as follows: 

 

𝐼 =  
∑ 𝑛(𝑅𝑖− �̅�)(𝑅𝑗− �̅�)

𝑗
𝑖=𝑛

∑ 𝐽(𝑅𝑖− �̅�)𝑛
𝑖=𝑛

2                                                                 (1) 

 

In this equation, n represents the total number of areas, J is the total number of joints, Ri 

and Rj are the rainfall depths in two adjacent areas, and R̅ denotes the overall mean of rainfall. 

Positive Moran’s I (I > 0) indicates that similar values, such as areas with high rainfall density, tend 

to cluster together. At the same time, negative Moran’s I (I < 0) suggests dissimilarity with 

contrasting conditions like uniform rainfall patterns. A zero value (I = 0) implies no spatial 

correlation, indicating a random distribution across the study area. This measure is crucial for 

spatially explicit models, such as GWR, as it helps identify local patterns that differ from global 

trends. Moran’s I provide valuable insights into spatial dependence, widely used in environmental 

studies, urban planning, and climate research (Ghalhari et al., 2016; Iriany et al., 2024; Javari, 

2017). In this study, it was applied to assess rainfall spatial variability across Borneo. 

 

4.2 Geographically weighted regression 

GWR is a spatial analysis technique examining spatially varying relationships between variables 

(Debele & Beketie, 2024). Unlike traditional regression models, which assume uniform 

relationships across a region, GWR estimates local coefficients that vary depending on location, 
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enabling the identification of spatially specific patterns (Ali et al., 2024). This method accounts for 

spatial non-stationarity, meaning the relationship between dependent and independent variables 

can vary across space. In GWR, each observation is weighted based on its proximity to other 

observations, with closer observations having a significantly greater influence on local regression 

estimates. The result is a set of location-specific parameters that provide a more detailed 

understanding of spatial dynamics. GWR is especially valuable in environmental and climate 

studies, where local factors like topography, land use, and climate conditions influence the 

interaction between variables (Khosravi et al., 2024). In this study, GWR was applied to assess the 

spatial variation in the relationship between rainfall and vegetation dynamics across Borneo during 

the 2007 La Niña event, allowing for a better understanding of how local environmental factors 

shape vegetation responses to climate variability. The GWR model, formulated as shown in 

equation 2, estimates location-specific coefficients that account for spatial heterogeneity in 

predictor-response relationships. 

 

𝑦𝑖 = 𝛽0(𝑢𝑖 , 𝑣𝑖) + 𝛽1(𝑢𝑖 , 𝑣𝑖)𝑥1𝑖 + 𝛽2(𝑢𝑖 , 𝑣𝑖)𝑥2𝑖 + ⋯ + 𝛽𝑘(𝑢𝑖 , 𝑣𝑖)𝑥𝑘𝑖 + 𝜖𝑖                   (2) 

where: 

𝑦𝑖 is the dependent variable at location i, 

𝑥1𝑖, 𝑥2𝑖,… 𝑥𝑘𝑖are the independent variables (predictors) at location i, 

𝛽0(𝑢𝑖 , 𝑣𝑖), 𝛽1(𝑢𝑖 , 𝑣𝑖),…, 𝛽𝑘(𝑢𝑖 , 𝑣𝑖) are the local coefficients estimated at location i, 

(𝑢𝑖 , 𝑣𝑖)represents the coordinates of location 𝑖 in the spatial domain, 

𝜖𝑖 is the error term at location i, 

 

The coefficients 𝛽0, 𝛽1,…, 𝛽𝑘 vary across locations, reflecting spatial non-stationarity, 

which means that the relationship between the independent and dependent variables changes over 

space. The spatial distance between observations weights the estimation of these local coefficients. 

A kernel Gaussian function was used to assign weights, where closer observations have higher 

weights, and the influence of distant observations diminishes (Geniaux, 2024). This approach 

allows for a detailed exploration of spatial patterns in the data. The GWR model is typically fitted 

by minimizing a weighted sum of squared residuals, which incorporates the spatial weights based 

on the distance between locations. The result is a set of local regression coefficients that reveal how 
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the relationships between variables differ across space, offering a deeper understanding of spatially 

variable processes such as those found in environmental and climate studies. 

 

 

4.3 Model comparison 

The Brunsdon, Fotheringham, and Charlton (2002) ANOVA method is used in GWR to test whether 

the spatially varying relationships between the dependent and independent variables are 

statistically significant. The ANOVA statistic compares the fit of the local GWR model with that 

of the global ordinary least squares (OLS) model. The equation for the ANOVA statistic is given 

by: 

F =  

𝑅𝑆𝑆𝑔𝑙𝑜𝑏𝑎𝑙− 𝑅𝑆𝑆𝑙𝑜𝑐𝑎𝑙

𝑝
𝑅𝑆𝑆𝑙𝑜𝑐𝑎𝑙
(𝑛−𝑝−1)

                                                                            (3) 

 

where 𝑅𝑆𝑆𝑔𝑙𝑜𝑏𝑎𝑙 and 𝑅𝑆𝑆𝑙𝑜𝑐𝑎𝑙 are the residual sum of squares for the global and local 

models, respectively; 𝑝 is the number of parameters in the model (including the intercept), and 𝑛 

is the number of observations. A significant value for 𝐹 (indicating a small p-value) suggests that 

the GWR model better fits the global model, highlighting the importance of spatially varying 

relationships in the data. 

 

4.4 Evaluation of predicted pattern 

To evaluate the predictive performance of the GWR model in predicting NDVI, three statistical 

indices were utilized: the Mean Absolute Error (MAE) (see equation 4), Root Mean Square Error 

(RMSE) (see equation 5), and percent bias (PBIAS) (see equation 6). Furthermore, spatial maps of 

observed and predicted NDVI values were generated to assess the model’s accuracy across the 

study area visually. 

  

𝑀𝐴𝐸 =  
1

𝑁
∑ [𝑧𝑡

∗ −  𝑧𝑡]𝑁
𝑡=1                                                                (4) 

𝑅𝑀𝑆𝐸 =  √∑ [𝑧𝑡
∗− 𝑧𝑡]

2𝑁
𝑡=1

𝑁
                                                                  (5) 

𝑃𝐵𝐼𝐴𝑆 =  
∑ (𝑂𝑖− 𝑀𝑖)𝑛

𝑖−1

∑ 𝑂𝑖
𝑛
𝑖−1

× 100                                                        (6) 
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5.0 Results and Discussion 

5.1 Spatial distribution of rainfall and NDVI in Borneo 

Moran’s I assess spatial autocorrelation, indicating whether variable values are clustered, 

dispersed, or randomly distributed. In this analysis, Moran’s I was calculated for monthly rainfall 

data during the 2007 strong La Niña event across Borneo, with values ranging from 0.012 to 0.034, 

indicating a low level of positive spatial autocorrelation. Positive values suggest rainfall tends to 

cluster geographically, with statistically significant p-values supporting spatial dependence. The 

highest Moran’s I value of 0.034 occurred in September, likely reflecting seasonal influences. The 

analysis highlights significant spatial clustering of rainfall, emphasizing the importance of spatial 

factors in ecological studies. The spatial distribution of monthly rainfall in Borneo during the 2007 

intense La Niña event shows significant variation, as shown in Figure 2. In January, rainfall ranges 

from 300 to 700 mm, particularly in the north-western coast of Sarawak, as well as in the southwest, 

southern, central, and northeastern regions. 
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Figure 2. Spatial distribution of monthly rainfall (mm) in Borneo during the 2007 intense La Niña 

event 

 

February sees a slight decrease, but rainfall remains substantial, ranging from 300 to 700 

mm. March follows a similar pattern. In April, rainfall drops to 300–500 mm, with coastal areas 

receiving slightly less. May shows further reductions, particularly in central and southern regions 

(200–500 mm). June sees an increase, with values returning to 300–700 mm, particularly in 

northern and central areas. July typically experiences higher rainfall in the north, ranging from 300 

to 700 mm. August and September show similar trends, with high rainfall in the north. October 

sees an increase, particularly in central regions, reaching 700 mm. November and December 

experience the highest rainfall (500–700 mm), marking the peak of the La Niña effect. This aligns 

with Zhang et al. (2024a), who reported that extreme precipitation in Borneo typically occurs from 

late December to mid-January during La Niña, driven by a dipole anomalous vertical motion 
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pattern over the Maritime Continent (MC) and tropical Pacific, influenced by seasonal changes in 

sea surface temperature (SST) in the eastern equatorial Pacific. 

The monthly NDVI in Borneo during the 2007 intense La Niña event shows a consistent 

spatial distribution throughout the year, with NDVI values generally ranging from 0.4 to 0.8 (Figure 

3). In January, the NDVI is relatively high across most areas, indicating healthy vegetation, with 

values predominantly between 0.6 and 0.8, particularly in the central and northern regions. 

February and March maintain similar patterns, with dense vegetation across Borneo, as reflected 

by NDVI values that are mostly above 0.6. In April, there is a slight decrease in NDVI values, with 

some regions showing values closer to 0.4, especially in southern and coastal areas. From May to 

July, there is a stabilization in NDVI values across the island, with the central regions consistently 

displaying high values of 0.6 to 0.8, while the peripheral areas show slightly lower values, ranging 

from 0.4 to 0.6. Kemarau and Eboy (2022) found that during the late 2017/18 La Niña event, 

improved Vegetation Health Index (VHI) values reflected healthier vegetation, as increased rainfall 

alleviated drought and enhanced plant health by providing adequate moisture for photosynthesis. 

From August to October, NDVI values indicate a healthy vegetation cover, with most areas 

exhibiting values ranging from 0.6 to 0.8. During this period, there is little spatial variability across 

Borneo, indicating widespread vegetation growth likely supported by the wet conditions of the La 

Niña event. November and December exhibit similar values, with most Borneo regions showing 

NDVI values between 0.6 and 0.8, particularly in the central and northern areas, indicating robust 

vegetation health across these regions. The La Niña event likely contributed to these conditions by 

supporting abundant rainfall and vegetation growth across the island. Overall, the high NDVI 

values throughout the year reflect lush and dense vegetation in Borneo, with slight fluctuations in 

peripheral regions and lower values along the southern and coastal areas. The findings support the 

work of Kemarau and Eboy (2022), which highlighted that different districts in Sarawak 

experienced varying levels of vegetation health during La Niña. 
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Figure 3. Spatial distribution of monthly NDVI in Borneo during the 2007 intense La Niña event 

 

5.2 Spatial analysis of rainfall-NDVI relationship using GWR 

The Brunsdon, Fotheringham, and Charlton (2002) ANOVA results for each monthly GWR model 

test the spatial non-stationarity of the relationship between rainfall and NDVI for each month 

during the 2007 La Niña event. Each test compares the OLS model, which assumes a constant 

relationship across the study area, to the GWR model, which allows for spatially varying 

coefficients (Table 1). For La Niña 2007, the F-statistic, degrees of freedom (df1 = 959 and df2), 

p-values, and residual sum of squares (SS) are provided for both the OLS and GWR models. In 

each monthly test, the results indicate a statistically significant improvement in fit for the GWR 

model compared to the OLS model. This suggests that the relationship between rainfall and NDVI 

varies across the study region, supporting the hypothesis of spatial non-stationarity. For most 

months, the F-statistic is greater than 1, and the p-values are below 0.05, indicating that the GWR 

model explains a significantly more significant portion of the variance in NDVI than the OLS 
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model. The residual sums of squares for the GWR model are consistently lower than those of the 

OLS model across all months, reflecting an improved fit. The spatially varying coefficients in the 

GWR model likely capture localized variations in the relationship between rainfall and NDVI, 

which the global OLS model cannot. Previous work by Kashki et al. (2021) also found that GWR 

outperformed OLS in modeling the spatial distribution of Land Surface Temperatures (LSTs) in 

Shiraz, effectively capturing the localized variations in how geographic factors influence LST 

across the city. Another study by Khalid, Shamim, and Ahmad (2024) also demonstrates that GWR 

outperforms OLS by accounting for spatial non-stationarity, allowing it to capture localized 

variations in the relationship between LST and its predictors. This highlights GWR’s ability to 

model local patterns and provide a more accurate representation of spatial dynamics in 

heterogeneous regions. 

 

Table 1. Summary of GWR results across all months for 2007 strong La Niña events 

Month Bandwidth F-

Statistic 

df2 p-value SS OLS 

Residuals 

SS GWR 

Residuals 

Jan 0.01127 1.2368 854.83 0.0007269 27.24028 22.02405 

Feb 0.00828 1.3204 833.55 0.00001835 13.63874 10.32937 

Mar 0.01667 1.1921 879.75 0.003973 10.362201 8.692647 

Apr 0.00520 1.3929 804.89 0.000000575 7.093546 5.092679 

May 0.00521 1.4196 806.16 1.356E-07 8.056353 5.675174 

Jun 0.01251 1.2324 862.85 0.0008481 9.370429 7.60317 

Jul 0.00518 1.4586 808.47 1.499E-08 7.959187 5.456546 

Aug 0.01311 1.2301 868.2 0.0009172 9.659869 7.852958 

Sep 0.00729 1.3583 828.84 0.000002849 9.337822 6.874647 

Oct 0.00522 1.4287 803.12 8.477E-08 12.912359 9.037551 

Nov 0.01872 1.1223 895.82 0.03986 24.21611 21.57814 

Dec 0.00476 1.408 787.32 3.053E-07 16.35751 11.6172 

Summary: The table showed variations in bandwidth, F-statistics, and p-values. The consistently 

low p-values indicate statistically significant relationships. At the same time, the reduction in 

residual sums of squares (SS OLS vs. SS GWR) highlights the improved model fit achieved by 

incorporating spatial variability. Notably, the highest F-statistics are observed in April, May, and 
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July, suggesting more substantial spatial heterogeneity in the rainfall-NDVI relationship during 

these months. 

 

The results of the GWR analyses for the 2007 strong La Niña events are summarized in 

Table 2, detailing model fit statistics for each month. For each monthly model, several key metrics 

were observed, including the Akaike Information Criterion (AIC), the corrected AIC (AICc), 

Quasi-global R², residual sum of squares (RSS), and sigma, which offer insights into model 

performance and spatial variability. In October, the GWR model displayed the lowest AIC (237.38) 

and AICc (237.41), with a high Quasi-global R² of 0.3125, indicating the best model fit among all 

months. This suggests that the spatially varying relationship between rainfall and NDVI was most 

effectively captured this month, with an RSS of 0.253882 and a sigma of 0.5299, indicating 

minimal residual error. September and December also exhibited strong model performance with 

Quasi-global R² values of 0.2744 and 0.2899, respectively, and relatively low RSS values, 

underscoring significant spatial non-stationarity in the rainfall-NDVI relationship during these 

months. 

Conversely, the GWR models for June and July showed the weakest model fit, with the 

lowest Quasi-global R² values (0.1453 in June and 0.1369 in July) and relatively higher AIC values 

(264.31 in June and 269.76 in July), suggesting that spatial variation in the rainfall-NDVI 

relationship was less pronounced during the mid-year. Notably, sigma values were also higher in 

these months (0.6084 for June and 0.5954 for July), indicating greater residual variance than other 

months. Overall, the GWR analysis highlights that the spatial variability in rainfall’s influence on 

NDVI is not constant throughout the year. High Quasi-global R² values and lower RSS values in 

the wet season months, particularly October, September, and December, reflect more significant 

spatially clustered responses of NDVI to rainfall during these periods, likely due to increased 

vegetation response to La Niña-induced rainfall in tropical regions. Consistent with Hu and Xu 

(2019), the study shows that GWR captures spatial variability in relationships between dependent 

and independent variables, enabling localized analysis. GWR models demonstrated higher adjusted 

R² values, indicating a better data fit, along with smaller AIC values and RSS, reflecting improved 

accuracy in data representation. 
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Table 2. Results from the GWR analyses for each month for 2007 La Niña events 

Month AIC AICc Quasi-global R2 RSS Sigma 

January 257.19 257.21 0.1834 0.320052 0.5544 

February 250.77 250.8 0.2257 0.290086 0.5386 

March 249.7 249.73 0.2386 0.298209 0.5423 

April 252.67 252.7 0.2124 0.309163 0.5535 

May 259.58 259.61 0.1908 0.346713 0.5582 

June 264.31 264.34 0.1453 0.367008 0.6084 

July 269.76 269.79 0.1369 0.370856 0.5954 

August 254.16 254.19 0.2064 0.296882 0.553 

September 242.91 242.94 0.2744 0.262588 0.5318 

October 237.38 237.41 0.3125 0.253882 0.5299 

November 259.82 259.85 0.1316 0.331155 0.5641 

December 245.87 245.9 0.2899 0.278525 0.5461 

Summary: The table highlights variations in model performance across different months. The 

quasi-global R² values indicate the strength of the rainfall-NDVI relationship, with the highest 

values observed in October (0.3125) and December (0.2899), suggesting a stronger spatial 

correlation during these months. The lowest R² values in June (0.1453) and November (0.1316) 

reflect weaker model performance, likely due to seasonal variations in vegetation response. 

Additionally, lower AIC and AICc values in October and September indicate a better model fit 

than in other months. 

 

5.3 Spatial patterns of the NDVI-rainfall relationship 

The monthly pattern of local R2 values in Borneo reflects the influence of monsoonal rainfall on 

vegetation dynamics, exhibiting distinct seasonal variations across the NEM (November–March), 

SWM (May–September), and the inter-monsoon periods (April and October) (Figure 4). During 

the NEM, the primary rainy season, the relationship between rainfall and NDVI is strongest. The 

maximum R2 values range from 0.27 in November to 0.54 in February, with December peaking at 

0.74. Higher correlations are primarily observed in central and southern Borneo, indicating that 

rainfall plays a key role in driving vegetation growth during this period. According to Takamura et 

al. (2023), the net ecosystem productivity in Bornean rainforests reaches its peak during La Niña 

events. This increase indicates that vegetation becomes notably more productive, likely driven by 

climatic conditions that promote enhanced photosynthesis and growth. However, some northern 
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areas exhibit lower correlations, likely due to differences in monsoonal influence, topography, 

vegetation types, land cover, or soil moisture retention capacities. Despite the overall strong 

relationship, the minimum R2 values remain low (0.02–0.05), indicating that other environmental 

factors influence vegetation response in certain regions. 

 

 

Figure 4. Spatial distribution of local R2 patterns for the 2007 La Niña event 

 

The inter-monsoon periods (April and October) mark a transition in the rainfall-NDVI 

relationship. Maximum R2 values remain relatively high, reaching 0.67 in April and 0.64 in 

October, suggesting that increased convective rainfall during these months considerably influences 

vegetation. Moderate to high correlations are observed mainly in southern and western Borneo, 

likely due to residual soil moisture from the preceding wet season sustaining vegetation activity. 

The minimum R2 values (0.03–0.04) are slightly higher than in the dry season, reflecting moderate 
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spatial variability. During the SWM, characterized by drier conditions, the relationship between 

rainfall and NDVI weakens. However, the high maximum R2 value of 0.76 in May may be 

attributed to the residual influence of the preceding inter-monsoon period, where increased 

convective rainfall sustains vegetation activity. Then, maximum R2 values decline to their lowest 

in August (0.36), slightly recovering in September (0.49). The lowest R2 values (0.00–0.04) occur 

during this period, particularly in northern and eastern Borneo, indicating a weakened rainfall-

NDVI relationship in the dry season. Sa’adi et al. (2024a) suggest that monsoon effects vary across 

Borneo’s distinct climate zones. In particular, the ‘Dry and Hot’ zone in the southern region 

receives comparatively less rainfall, which diminishes the impact of La Niña in that area. Here, 

Borneo’s central mountain range, including the Crocker Range in Sabah and the highlands of East 

Kalimantan, acts as a barrier to moist air masses. As winds rise over these highlands, orographic 

lifting increases rainfall on the windward slopes, while the descending air on the leeward side 

(northern Sabah and East Kalimantan) undergoes adiabatic warming, reducing moisture and 

limiting rainfall. Land cover also plays a key role in this pattern.  

This reduction also suggests that vegetation growth may be influenced by soil moisture 

availability or by deeper-rooted plants accessing stored water, rather than relying solely on 

immediate rainfall. The northern and eastern regions of Borneo contain a mix of degraded forests 

and plantation areas, which have lower soil moisture retention and vegetation resilience compared 

to dense tropical rainforests (Shiraishi et al., 2023). In contrast, western Borneo, with its more 

extensive forest cover, retains higher moisture levels, supporting a stronger NDVI response to 

rainfall. Additionally, peatlands and riparian zones in western Borneo sustain vegetation activity 

even in drier months (Omar et al., 2022). Meanwhile, drier upland areas in northern Sabah and East 

Kalimantan experience more distinct seasonal fluctuations in NDVI. The spatial distribution 

pattern indicates that the influence of rainfall on vegetation health and density, as represented by 

NDVI, is not uniform across Borneo. The overall results highlight the dominant influence of the 

NEM on vegetation, particularly in December, when the highest maximum R2 value of 0.74 is 

observed. These seasonal dynamics highlight the primary role of rainfall in driving vegetation 

changes across Borneo, while also emphasizing the influence of additional environmental 

conditions on shaping the rainfall-NDVI relationship. This analysis underscores the spatial non-

stationarity of the rainfall-NDVI relationship during the 2007 strong La Niña event, with more 

pronounced effects in specific regions and times of the year. 
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The spatial distribution of rainfall coefficients from the GWR analysis for the 2007 strong 

La Niña event reveals distinct monthly variations across Borneo, capturing how NDVI responds to 

rainfall increases in different regions (Figure 5). Rainfall coefficients range from -0.002 to 0.001, 

showing spatial and temporal variations in the rainfall-NDVI relationship. Positive coefficients 

indicate areas where increased rainfall boosts NDVI, suggesting higher vegetation responsiveness. 

Negative coefficients suggest that rainfall increases do not enhance or only slightly reduce NDVI, 

possibly due to limiting factors. The maps show notable positive coefficients across Borneo, 

reaching a value of 0.001. This pattern suggests vegetation in these regions was exceptionally 

responsive to La Niña-induced rainfall. Supporting this, O’Brien et al. (2024) observed that 

excessive rain in lowland, aseasonal tropical forests in Malaysia’s tropical region can hinder tree 

growth and survival, likely because of increased vulnerability to prolonged waterlogging. 

In contrast, certain localised areas consistently exhibit low or negative coefficients 

throughout the year, indicating regions where increased rainfall correlates with a slight reduction 

or lack of response in NDVI. This pattern varies notably across months. Negative coefficients are 

relatively sparse at the beginning of the year, appearing only in isolated areas in January and 

February, primarily in the easternmost part and the central north-western enclave in Miri, Sarawak, 

and Brunei. This might be due to saturation due to flood occurrence (Isia et al., 2023; Taris et al., 

2019) in this area caused by the co-occurrence of the Borneo vortex and cold surge during the peak 

of NEM (Purwaningsih et al., 2022). By March, these areas will have expanded, particularly in the 

central-eastern region of Borneo, suggesting a minor inverse relationship between rainfall and 

vegetation response. Ariska et al. (2024) indicate that areas consistently showing a negative 

relationship may be linked to the Niño3 region and the South Pacific convergence zone. Here, 

warmer sea surface temperatures (SST) in the warm pool area are associated with decreased rainfall 

over Indonesia. 

In the mid-year months of June and July, negative coefficients become more prominent in 

the southern regions, indicating that rainfall during this period has a limited influence on NDVI, 

possibly due to the influence of geographical climate zones and monsoonal factors that restrict 

vegetation response. In August, there is a reduction in these negative zones, which re-emerge in 

localized areas by October, primarily in central Borneo, and persist through November in northern 

and central areas. December shows scattered negative coefficients across northern and southern 

regions, suggesting a continued lack of vegetation response to rainfall in certain parts of the island 
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towards the end of the year due to flooding and saturation. This pattern highlights how the impact 

of rainfall on vegetation can be regionally constrained during the La Niña event, with varying 

seasonal and geographical limitations on vegetation’s responsiveness to rainfall across Borneo. 

Overall, this analysis highlights the spatially and temporally varying influence of rainfall on NDVI 

during the 2007 strong La Niña event, with the most pronounced positive relationships observed 

in early and mid-year months across northern and central regions of Borneo. 

 

 

Figure 5. Rainfall coefficients during the 2007 La Niña event. The coefficients related to rainfall 

illustrate the extent of change in NDVI for a spatial unit with a corresponding increase in a spatial 

unit of rainfall 
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5.4 Performance of the predicted pattern 

The predicted NDVI values for the 2007 intense La Niña event generally show a strong 

performance in capturing the regional vegetation response, particularly the enhanced greenness 

associated with La Niña’s wetter conditions (Figure 6). The model’s predictions demonstrate high 

NDVI values across Borneo, with ranges from 0.5 to 0.9. This aligns well with the expected 

increase in vegetation vigor due to the elevated rainfall during a La Niña year. This suggests that 

the model effectively captures seasonal and spatial variations in NDVI influenced by precipitation. 

However, there are a few areas where the predictions could potentially under- or overestimate 

NDVI in certain months. For instance, while the northern and central parts of Borneo show higher 

NDVI values in May, October, and December, the model may not fully capture localized 

fluctuations in vegetation health that can occur due to factors such as land use, soil type, or extreme 

rainfall variability. 

Furthermore, the relatively uniform NDVI distribution in certain months, such as February 

and November, may overlook smaller-scale variations in vegetation, especially in more 

heterogeneous landscapes. Overall, the predicted NDVI values perform well in reflecting broad 

seasonal vegetation dynamics across Borneo during La Niña conditions, particularly in capturing 

the peak vegetation months. However, the model’s spatial resolution and focus on rainfall as a 

primary predictor may limit its ability to capture finer-scale ecological variations, suggesting 

potential areas for improvement by incorporating additional variables or higher-resolution data. 
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Figure 6. Spatial distribution of predicted NDVI during the 2007 La Niña event 

 

The statistical evaluation of the observed NDVI against the predicted NDVI, measured 

using MAE, RMSE, and PBIAS, provides insights into the model’s performance across each month 

of the year (Table 3). The MAE values indicate that the average error between observed and 

predicted NDVI values ranges from 0.049 to 0.112. April and May have the lowest MAE (0.049), 

suggesting that the model is most accurate in these months. January and November have the highest 

MAE values, at 0.112 and 0.111, respectively, indicating slightly higher prediction errors during 

these months. RMSE, which emphasizes larger errors, varies from 0.073 to 0.151 across months. 

Similar to MAE, the lowest RMSE is observed in April (0.073), indicating that the model performs 

best in April. The highest RMSE is observed in January (0.151), indicating that prediction accuracy 

decreases during this month, which may be attributed to more variable NDVI responses to 

environmental factors early in the year. PBIAS values represent the model's tendency to over- or 

underestimate NDVI. Most months exhibit a positive PBIAS, indicating a general tendency for the 
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model to overpredict NDVI values slightly. August has the highest PBIAS (0.353), followed by 

June (0.331) and March (0.268), suggesting notable overestimations in these months. 

In contrast, November and December exhibit the lowest PBIAS (0.091), indicating minimal 

bias and relatively balanced prediction performance in these months. The model performs 

reasonably well, with moderate MAE and RMSE values and relatively low PBIAS values in many 

months. The tendency for overestimation in certain months, especially during mid-year, may 

suggest that the model could benefit from adjustments to account for seasonal or environmental 

factors specific to these periods. The months with lower errors (such as April, May, November, and 

December) indicate stronger predictive performance, possibly due to more stable NDVI patterns 

during these months. This analysis suggests areas for model refinement, mainly to reduce 

overestimation in mid-year months. 

 

Table 3. Statistical evaluation of the observed NDVI against predicted NDVI 

Month MAE RMSE PBIAS 

Jan 0.112 0.151 0.161 

Feb 0.073 0.104 0.158 

Mar 0.061 0.095 0.268 

Apr 0.049 0.073 0.254 

May 0.049 0.077 0.107 

Jun 0.056 0.089 0.331 

Jul 0.050 0.075 0.218 

Aug 0.058 0.090 0.353 

Sep 0.055 0.085 0.243 

Oct 0.061 0.097 0.227 

Nov 0.111 0.150 0.091 

Dec 0.080 0.110 0.091 

 

6.0 Conclusion 

This research provides an in-depth evaluation of NDVI dynamics during the 2007 strong La Niña 

event across Borneo, focusing on the spatial relationship between rainfall and vegetation response. 

Using GWR, this study assesses the spatial distribution of local R2, rainfall coefficients, and 
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predicted NDVI, illustrating how changes in rainfall impact vegetation greenness. The findings 

reveal significant spatial variability, with certain areas exhibiting a stronger response to rainfall 

fluctuations, reflecting the sensitivity of vegetation in these regions to La Niña-induced rainfall 

patterns. The statistical assessment of model performance, using MAE, RMSE, and PBIAS, 

demonstrated strong predictive accuracy in the earlier months of the year, particularly in April and 

May, where both MAE and RMSE values were relatively low, indicating minimal deviation from 

observed values. However, the model showed a trend of overestimating NDVI during the peak 

SWM months (June to August), as evidenced by elevated PBIAS values, suggesting that the model 

may not fully capture the complexities of vegetation response to extreme drier conditions during 

these periods. The spatial distribution maps for predicted NDVI further emphasize the areas with 

higher rainfall coefficients, illustrating how certain regions are more likely to experience vegetation 

greening with increased rainfall. 

These findings have practical implications for land management and conservation in 

Borneo. By identifying regions more resilient or vulnerable to climate variability, policymakers 

and environmental agencies can develop targeted conservation strategies, prioritize reforestation 

efforts, and enhance ecological resilience in areas prone to extreme climate events. Additionally, 

findings from this study can guide land-use planning to minimize the impact of climate-induced 

vegetation shifts on agriculture, forestry, and biodiversity conservation. This study helps flood 

adaptation in Borneo by identifying regions where vegetation is highly sensitive to rainfall 

fluctuations, particularly during La Niña events associated with increased rainfall and flooding. 

For example, in flood-prone areas like the Sarawak River Basin in north western Borneo (Ghenim 

& Megnounif, 2023), the study’s findings on NDVI-rainfall relationships can help determine zones 

where vegetation loss is likely due to prolonged flooding. This can guide reforestation efforts with 

flood-resistant plant species, such as mangroves and deep-rooted trees, to enhance natural flood 

buffers (Tasnim et al., 2023). Additionally, areas showing strong NDVI response to rainfall can be 

prioritized for sustainable land-use planning, reducing deforestation that exacerbates flood risks. 

By integrating these findings with flood early warning systems, local authorities can improve 

watershed management strategies, ensuring better preparedness for extreme rainfall events. 

Furthermore, the application of GWR in this study demonstrates its potential for predicting 

future climate impacts under changing climate scenarios. By integrating projected rainfall data 

from climate models (Sa’adi et al., 2024b), GWR can be employed to assess how vegetation 
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dynamics may respond to future climate variability, helping to refine adaptation strategies. This 

approach can aid in developing proactive policies to mitigate the adverse effects of climate change 

on ecosystems and agricultural productivity in Borneo. Overall, this study underscores the utility 

of NDVI as a measure of vegetation response to climatic events and highlights the need for further 

refinement of predictive models to improve their accuracy during extreme rainfall periods. Future 

research should incorporate additional environmental variables, such as soil moisture and land 

cover dynamics, to enhance model performance and ensure more robust predictions of vegetation 

responses under future climate scenarios. These advancements will support more effective 

adaptation and resilience strategies, particularly in ecologically sensitive and climate-vulnerable 

regions like Borneo. 
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