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Abstract – Coastal erosion is a severe environmental threat, impacting many coastal areas worldwide. The increasing rate and 

severity of erosion occurrences can be attributed to natural and human sources. Coastal erosion is becoming more prevalent 

through rising sea levels, climate change, and human activities, including urbanisation and unsustainable coastal development. 

This study examines the geographical and chronological patterns of coastal erosion along the shoreline of Kuala Rompin, 

Pahang, for a long-term period, specifically from 2003 to 2023. Over the past twenty years, coastline features and coastal 

erosion rates have been revealed by utilising Landsat satellite optical imagery. Additionally, with the desired satellite revisit 

timeframe, the combination of high-resolution multispectral data and advanced GIS spatial analysis tools enables 

comprehensive change detection to assess the coastal landscape’s dynamic pattern and vulnerability rate. Data analysis indicates 

an average erosion rate of -0.476 meters per year, with significant variability along the coastline. Besides that, this study also 

delved deeper into the relationship between environmental factors and the likelihood of erosion, offering valuable insights into 

the factors that caused changes in the coastal area. The utilisation of GIS and remote sensing images in this study provided a 

flexible and adaptable framework in the form of classified remote sensing images and GIS models complete with analysis for 

evaluating the susceptibility of coastal areas in different regions, promoting a wider range of potential applications for the 

research findings to aid other departments in mitigating and preventing coastal erosion in the area. The findings provide an 

enhanced comprehension of the dynamics of coastal erosion around Kuala Rompin, facilitating well-informed decision-making 

for implementing sustainable methods in coastal management. In summary, this research can serve as a significant reference 

for environmental scientists, policymakers, and coastal management practitioners involved in addressing the effects of erosion 

on susceptible coastal regions. 
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1.0 Introduction 

According to the Luijendijk et al. (2018), the coastline is a barrier that divides the water from the 

mainland. They stated that the term “coastal zone” can refer to the larger geographical area where 

the worldwide sea meets land. Rock coastlines, extensive mangrove forests, and muddy salt 

marshes are examples of coastal zones. Mahmud & Tang (2023) has stated that Malaysia has a total 

land area of 332,556 km2, with 4,800 km comprising coastlines due to Malaysia’s territorial seas 

encompassing about 150,000 km2. 

The process by which the local sea-level rise, intense wave movement, and coastal flooding 

tear down or sweep away rocks, soils, and/or sands along the shore is known as coastal erosion, as 

stated by the Masselink & Gehrels (2014), and other natural phenomena create erosion across all 

coastlines along with the combination of the effects of storm surges at high tide with additional 

impacts from large waves creates the most devastating scenarios. Due to the ever-growing effects 

of climate change and global warming, there has been an alarming increase in hazards affecting 

Malaysia’s shorelines, bringing about coastal erosion and an escalation of sea-level rise (Mohamed 

Rashidi et al., 2021). Hasan et al. (2023) has reported that 1,347.6 km of an 8,840 km coastline is 

actively eroding, with one-third of the area dropping into the critical and major categories that 

require structural protection. This is hazardous to the coastline mainly because, as a maritime 

country, Malaysia is situated near the equator in Southeast Asia, with key ports on international 

marine and shipping routes. Seven water zones enclose it, and the total sea area is about double the 

land area (Flewwelling et al., 2021). As a result, the threats of coastal erosion and sea-level rise 

have continually negatively affected the physical, socioeconomic, and biodiversity along the 

coastlines.  

The coastline is an ever-changing setting where human constructions and activities are 

situated. As a result, it is critical to have a reliable instrument to measure, estimate, and, if possible, 

predict shoreline movement towards the land or toward the ocean (Apostolopoulos, 2021). 

Therefore, Geographical Information Systems (GIS), as well as satellite images obtained from 

remote sensing, have been used for a prolonged amount of time to monitor the positioning of shore 

zones and coastline, which can provide consistent and accurate statistics of coastal fluctuations 

(Yasir et al., 2020, Hussaini et al., 2020). 

This study stands out by employing a novel approach to coastal erosion assessment by 

integrating multispectral satellite images and cloud-based processing. The Google Earth Engine 
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(GEE) platform allows for extensive geospatial analysis and visualisation in predicting disease 

outbreaks. It provides a robust framework for remote sensing research and natural resource 

management. Key highlights include utilising the cloud-based GEE platform for a detailed 

assessment of coastal erosion vulnerability and coastal fluctuations rate along Kuala Rompin’s 

shoreline over an extended period from 2003-2023. This approach addresses current gaps in coastal 

monitoring methodologies, offering consistently accurate statistics on coastal fluctuations. This, in 

turn, aids in effective coastal management and decision-making, contributing to the body of 

knowledge with a more sophisticated and precise method of assessing and managing coastal 

erosion in Malaysia. 

 

2.0 Method and Area 

2.1 Shoreline Delineation  

The initial step of the flowchart in this research, as shown in Figure 1 below, involved carrying out 

a preliminary study and identifying the study area. Based on past relevant research studies, the 

goals and research challenges were defined and established at this study stage. The research focused 

on the issue of coastal erosion in a research area situated along the coast of Kuala Rompin, 

Peninsular Malaysia, based on the presence of tangible evidence that indicated a portion of the 

shoreline eroded since the 2010s. This eased the process of displaying the rate of shoreline changes 

and the conspicuous indications of coastal erosion around that area. 

The data for this study was retrieved from the GEE cloud-based platform that provided the 

past and latest satellite imagery intended to enhance the knowledge of the extent and pattern of 

coastal erosion in the coastline region of Kuala Rompin (Figure 2). This research has used a unique 

and comprehensive method to discover, analyse and predict the erosion rate of the Kuala Rompin 

area over 20 years, from 2003 until 2023. The references suggest a monitoring period of at least 

20 years can be considered long-term (Turner et al., 2016; Castelle & Harley, 2020). This extended 

timeframe allows researchers to capture the natural variability and cyclical patterns of coastal 

processes and detect the gradual, cumulative impacts of climate change, sea-level rise, and human 

activities on the coastline (McClenachan et al., 2020). 
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Figure 1. Workflow for this research’s methodology 
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Figure 2. The study area of this research (Google Earth, 2024) 

 

Upon defining the work area, the next step involved examining the preceding study 

conducted in the research paper, articles, journals, websites, and other relevant sources regarding 

coastal erosion, remote sensing images, shoreline analysis, and classification. The study table has 

resulted in a comprehensive compilation of reviews from prior research, whereas this chapter will 

provide a clear definition of all methodologies, formulae, and statistical measures used. 

The second phase included the collection of data. This research used data obtained from 

remote sensing to carry out the coastal analysis. The research used data spanning 20 years, from 

January 2003 to December 2023, consisting of yearly rate-of-change statistical values for different 

coastline positions around the shorelines of Kuala Rompin, Pahang. The Google Earth Engine 

(GEE) platform  obtained the remote sensing data.  
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This study utilises the GEE platform, a cloud-based computing system that offers efficient 

methods for storing, retrieving, and analysing datasets on powerful computers (Amani et al., 2020). 

Cloud-based systems like GEE provide users with various infrastructure, platforms, storage 

services, and software applications in multiple forms (Chi et al., 2016). GEE integrates Google’s 

computational systems, granting users access to open-access Remote Sensing data (Gorelick et al., 

2017). It can automatically execute multiple tasks simultaneously and features a fast-computing 

system designed to effectively handle the challenges of processing massive amounts of data. 

Additionally, GEE incorporates a variety of pre-existing algorithms, such as classification 

algorithms, that can assess data on a global scale (Amani et al., 2019). 

The ongoing data processing started in the second phase and continued in the third and 

fourth stages. The initial phase involves utilising supervised classification to process the data 

obtained from Landsat and Sentinel Images spanning 2003 to 2023, with the assistance of GEE. 

The Normalised Difference Water Index (NDWI) detects water features by utilising bands 2 and 4 

of Landsat-7 and 3 and 5 for Sentinel-2 images. The Normalised Difference Water Index (NDWI) 

places a numerical value of zero on bodies of water on the land surface. In contrast, non-water 

regions on the land surface are assigned values less than or equal to zero (Das et al., 2021). The 

following equation has  been applied to calculate the NDWI value from the Landsat and Sentinel 

data:  

 

NDWI = 
𝜌(λg)− 𝜌(λnir)

𝜌(λg)− 𝜌(λnir)
                 (1) 

 

where: 

𝜌(λg) = spectral reflectance of green wavelength 

𝜌(λnir) = spectral reflectance of near-infrared wavelength 

 

2.2 Shoreline Analysis (DSAS) 

This research employed ESRI ArcGIS software to analyse shoreline changes over time, with the 

Digital Shoreline Analysis System (DSAS) v5 serving as an additional extension to enhance the 

analysis. With the help of the DSAS software, a method to accurately establish measurement 

locations, perform rate calculations, and provide statistical data was vital in assessing the shoreline 

durability rate. 
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The quantification of shoreline differences using DSAS is commonly achieved through the 

“baseline and transect” technique. In this method, the user establishes a baseline inside the GIS 

environment and then casts transect lines perpendicular to the baseline (Gómez-Pazo et al., 2022). 

The shoreline change rates were determined using two techniques incorporated into the DSAS. The 

DSAS establishes orthogonal transects along the coast and calculates changing statistics using six 

unique methods, including End Point Rate (EPR), Net Shoreline Movement (NSM), and Linear 

Regression Rates (LRR). The EPR statistics are derived by dividing the displacement of the 

shoreline by the time interval between two specific dates (Yasir et al., 2020). Afterwards, the DSAS 

model creates transect lines perpendicular to the coastal baseline and intersects the shoreline at the 

user-select spacing. Each point where the transect intersects the shoreline along this baseline was 

then used to calculate the rate-of-change statistic (Valderrama-Landeros et al., 2019). 

This study employs DSAS software extension to analyse spatial shoreline changes by 

mapping the rate of coastline movement and changes over a long period. This analysis enables a 

detailed understanding of the extent of shoreline changes that might not be apparent to the naked 

eye. Additionally, the study enhances traditional methodology by integrating the GEE platform, 

leveraging its powerful cloud-based computing capabilities for more efficient data processing and 

comprehensive geospatial analysis. This combined approach provides a more sophisticated and 

precise assessment of coastal erosion and shoreline dynamics. 

 

2.3 Shoreline Categorisation  

The data used for this study was retrieved from Google Earth Engine, which provided the past and 

latest satellite imagery intended to enhance the knowledge of the extent and pattern of coastal 

erosion in the coastline region of Kuala Rompin. This research has used a unique and 

comprehensive method to discover, analyse and predict the erosion rate of the Kuala Rompin area 

over 20 years, from 2003 until 2023. 

The next step involved was doing a coastal analysis that utilised the processed Landsat and 

Sentinel data to assess the extent of shoreline erosion that has occurred in recent years, using the 

statistics given by the DSAS tool. The erosion severity is classified into five categories on a scale 

ranging from ‘High Erosion’ to ‘High Accretion’. For instance, a rapidly eroding section of 

shoreline was designated as a “High Erosion” erosion site. Conversely, a shoreline gradually 

wearing away was selected as a “Stable” erosion site. 
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The last phase was the erosion rate categorisation of the shoreline analysis, where this phase 

corresponded to the third objective of this study. The primary interest of this research was to 

determine and assess the coastal erosion vulnerability rate in Malaysia through coastline extraction 

and statistical analysis derived from the remote sensing images. This research evaluated and 

categorised the eroded coastline with the shoreline analysis from the latest remote sensing images. 

 

2.4 Uncertainty Analysis 

The standard error of the estimate was typically computed to assess the accuracy of the LRR and 

Weighted Linear Regression (WLR) procedures. The anticipated value of y, which represented the 

distance from the baseline, was calculated by utilising the value of x for the line of best fit, as 

shown in equation 2 below: 

𝑦 = 𝑚𝑥 + 𝑏              (2) 

 

where, 

y = predicted distance from baseline 

m = rate of change 

b = y-intercept  

 

 

Afterwards, the following equation was applied to compute the standard error for LRR, 

referred to as Linear Regression Standard Error (LSE), and Weighted Regression Rate (WRR), 

referred to as WSE: 

𝐿𝑆𝐸 𝑜𝑟 𝑊𝑆𝐸 =  √
∑(𝑦−𝑦′)2

𝑛−2
                 (3) 

where,  

y = measured distance from a baseline point for a data point on the shoreline 

y’ = predicted value derived from the equation 

n = number of shorelines used 

 

 

The R-square statistic was defined as the LR2 for linear regression with one independent 

variable and the WR2 for weighted linear regression. The equation for the R-square value was 

determined using: 

𝑅2 = 1 − √
∑(𝑦−𝑦′)2

∑𝑦−𝑚ⅇ𝑎𝑛 𝑜𝑓𝑦
                  (4) 

where,  
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R2 = coefficient of dependence  

y = distance measured from a baseline. 

y’ = predicted displacement from the baseline  

mean of y = average of the measured distance of the shoreline from the baseline. 

 

The equation below was used to obtain an uncertainty value of 0.74 for all the transects, 

which is referred to as EPRunc (Uncertainty of EPR).  

 

𝐸𝑃𝑅𝑢𝑛𝑐 =  
√((𝑢𝑛𝑐 𝐴)2+ ((𝑢𝑛𝑐 𝐵)2 

𝑑𝑎𝑡ⅇ 𝐴−𝑑𝑎𝑡ⅇ 𝐵
             (5) 

where,  

unc A= uncertainty from shoreline A  

unc B = uncertainty from shoreline B 

date A = date of the latest shoreline  

date B = date of the oldest shoreline 

 

3.0 Results and Discussion 

3.1 Results Obtained from GEE 

This section examined and discussed the findings of this study. The 2003, 2013, and 2023 data 

were analysed using Landsat and Sentinel images acquired via the GEE platform. The 

abovementioned images were analysed to assess coastal erosion. The surface reflectance dataset of 

Landsat-7 and Sentinel-2 was utilised due to its already existent atmospheric correction, removing 

the requirement for additional atmospheric correction.  

 



 

43 
 

 

Figure 3. Supervised Classified image of the area 

 

Following that, the shoreline of this region was extracted from the processed images by 

distinguishing the land cover and area of water through the application of the NDWI index (see 

Figure 3). The 2003, 2013, and 2023 shorelines were identified and digitised using the DSAS 

plugin within the GIS software. The findings derived from the coastline rate statistics produced by 

GIS software were evaluated to see if the shoreline exhibits significant erosion. Figure 4 below 

demonstrates the shorelines that appeared in 2003, 2013 and 2023, respectively. 
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Figure 4. Shorelines from 2003 to 2023 

 

3.2 Shoreline Analysis and Categorisation  

The shoreline changes were calculated using EPR, LRR, Shoreline Change Envelope (SCE), and 

NSM methods for each transect. The figures below present the findings of these study findings. 

The study conducted a long-term change analysis spanning 20 years (2003-2023). The baseline 

was considered to be the shoreline of 2003. A total of 795 transects were generated, each spanning 

a distance of 150 m, encompassing the whole territory. Figures 5 to 8 depict the graphical depiction 

of the rate changes between 2012 and 2021 for all methods. Figure 9 displays line graph illustrating 

the rate of changes based on the erosion levels.      
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Figure 5. Net Shoreline Movement (NSM) map 2003-2023 

 

 

Figure 6. End Point Rate (EPR) map 2003-2023 
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Figure 7. Linear Regression Rate (LRR) map 2003-2023 

 

 

Figure 8. Weighted Linear Regression (WLR) map 2003-2023 
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Figure 9. Graph showing the erosion rates 

 

The LRR, EPR, NSM, and SCE values were computed for these transects, and statistical 

analysis was performed with a 95.5% confidence interval for this data (Table 1). The study 

examined the rates of accretion and erosion in various areas.  

 

Table 1. Chainage measurement of the attributes along Transect 1-14 

ID SCE NSM EPR EPRunc LRR LR2 LSE WLR WR2 WSE 

1.00 84.16 -84.16 -8.58 0.11 0.00 0.00 0.00 0.00 0.00 0.00 

2.00 292.96 -292.96 -14.80 0.05 -14.80 1.00 9.47 -14.80 1.00 12.80 

3.00 278.70 -278.70 -14.08 0.05 -14.08 1.00 11.71 -14.08 1.00 15.83 

4.00 263.32 -263.32 -13.30 0.05 -13.30 1.00 9.29 -13.30 1.00 12.56 

5.00 253.92 -253.92 -12.83 0.05 -12.83 1.00 10.18 -12.83 1.00 13.76 

6.00 252.72 -252.72 -12.77 0.05 -12.77 0.99 15.00 -12.77 0.99 20.27 

7.00 250.98 -250.98 -12.68 0.05 -12.68 0.99 19.54 -12.68 0.99 26.40 

8.00 237.50 -237.50 -12.00 0.05 -12.00 0.99 19.28 -12.00 0.99 26.05 

9.00 224.69 -224.69 -11.35 0.05 -11.36 0.99 18.81 -11.36 0.99 25.42 

10.00 214.89 -214.89 -10.85 0.05 -10.86 0.99 16.82 -10.86 0.99 22.73 

11.00 214.35 -214.35 -10.83 0.05 -10.83 1.00 5.25 -10.83 1.00 7.10 

12.00 212.18 -212.18 -10.72 0.05 -10.72 1.00 4.52 -10.72 1.00 6.11 

13.00 210.35 -210.35 -10.63 0.05 -10.62 0.99 13.34 -10.62 0.99 18.03 

14.00 204.08 -204.08 -10.31 0.05 -10.30 0.99 15.98 -10.30 0.99 21.60 
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In Table 1, positive numbers indicate accretion, while negative values indicate erosion. 

Furthermore, taking into account all the transects, it is evident that there are positive averages, 

indicating accretion. The NSM value measures the magnitude and direction of nett shore movement 

to the baseline. The SCE value represents the maximum distance between any shoreline 

intersecting a specific segment. The rate of shoreline change (measured in metres per year) was 

determined using WLR and EPR statistics (refer to Table 1).  

Figure 10 displays a comparative graph illustrating each segment’s results of the EPR and 

LRR approaches. Both approaches yielded comparable outcomes, as was noted. Upon calculating 

the correlation between these two methodologies, it was determined that there was a 99% 

relationship. The correlation value demonstrates that both strategies yield consistent results.  

 

 

Figure 10. The WLR and EPR values (in m/yr) were calculated for all 795 transects throughout 

the time from 2003 to 2023 

 

The statistical data from Table 2 shows that the shoreline from 2003 until 2023 has eroded 

up to 42.89%. The average erosion rate for this period is -0.17 m/yr.  
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Table 2. Analysis results of the shoreline 

 2003-2023 

Total Transect 795.00 

Total Erosional Transect 341.00 

  

Erosional Transect (%) 42.89 

Mean Shoreline Change (m/yr) -0.09 

Max Shoreline Change (m/yr) 1.84 

Min Shoreline Change (m/yr) -2.64 

  

Mean Erosion (m/yr) -0.17 

Standard Deviation Erosion (m/yr) 0.35 

  

 

Based on the calculated mean erosion rate from the table above, it is evident that the 

coastline has been undergoing erosion at a rate of -1.88 m/yr throughout the last 20 years. In 

addition, during the period from 2003 to 2023, the highest rates of erosion are observed in the 

neighbourhood of regions A, B and C, as depicted in Figure 11 below, with values of -2.27 m/year 

and -2.24 m/year and -2.64 m/yr, respectively. Kuala Rompin is especially prone to erosion in these 

specific locations.  

 

 

Figure 11. The line graph illustrates the variations in rates across different areas 
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3.3 Shoreline Accuracy Assessment 

The accuracy of LRR and WLR was assessed using R-Square statistics, and the Standard Error of 

Estimation was also calculated for these rates. Table 3 displays the rate of change for each transect, 

along with their corresponding accuracy and standard error of estimation values. LR2 and WR2 are 

the coefficients of determination for LRR and WLR, respectively. LSE stands for the standard error 

of LRR, while WSE stands for the standard error of WLR. The R-square values have been classified 

into four categories: R2 > 0.6 indicates high accuracy, R2 = 0.4 - 0.6 indicates moderate accuracy, 

R2 < 0.4 indicates low accuracy, and an R2 value of 0 implies no link between variables. Under the 

LRR approach, approximately 60% of the data falls within the high accuracy range, utilising both 

the WLR and LRR methods. Only about 22% of the data has been identified with a zero R-squared 

numerical value. Table 3 displays the categorisation of R2 values together with their corresponding 

percentages. 

 

Table 3. Accuracy class of shoreline change analysis 

 LR2 LR2 (%) WR2 WR2 (%) 

High Accuracy 474.00 59.62 474.00 59.62 

Moderate Accuracy 57.00 7.17 57.00 7.17 

Low Accuracy  56.00 7.04 56.00 7.04 

No Relation 174.00 21.89 174.00 21.89 

 

 

 

Figure 12. The bar graph that illustrates the R2 statistics of the two methods 
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3.4 Coastal Erosion Categorisation 

Based on the data from Table 3, it is evident that the shoreline is experiencing an average 

landward movement at an annual EPR rate of -0.48 m/yr and an annual LRR and WLR rate of           

-0.39 m/yr. According to the erosion class provided in Table 4, an erosion rate of -0.48 m/yr and     

-0.39 m/yr is exceptionally high, indicating a significant and rapid loss of shoreline. The extent of 

erosion is expected to result in substantial land degradation over a relatively brief period, presenting 

a grave risk to coastal infrastructure, ecosystems, and communities. Immediate action may be 

necessary in these regions to prevent additional harm and reduce possible hazards, and temporary 

actions may be required to safeguard vital infrastructure and communities. 

 

Table 4. Average rates of changes 2003-2023 

  

Average Rate 

(m/yr) 

Average Erosion Rate 

(m/yr) 

EPR   -0.14 -0.48 

LRR  -0.12 -0.39 

WLR  -0.12 -0.39 

 

From this study, regions classified as having “Moderate erosion” underwent a substantial 

rate of change at their most extreme point. On the contrary, areas classified as “Stable” exhibit a 

higher average rate of change overall, which is likely attributed to stability in the erosion process. 

“High erosion” areas exhibit pronounced shifts at their furthest point and a comparably elevated 

mean value, suggesting a greater degree of persistent erosion around that shoreline area.  

Upon analysing the data from Table 5, it is evident that the most significant EPR value is 

92.45%, indicating stability. The highest result for WLR is 94.97%, also indicating stability. Based 

on the data shown in this table, it is evident that although several regions have seen significant 

erosion, a majority of the shorelines in the study area remain stable, with a few exceptions 

undergoing moderate erosion. This suggests that erosion is occurring at a rate that does not require 

immediate intervention, only monitoring in case it worsens. 
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Table 5. Erosion categorisation classes based on the rates of changes 2003-2023 

Class Values 

Total 

Number 

of EPR 

EPR 

(%) 

Total 

Number 

of LRR 

LRR 

(%) 

Total 

Number 

of WLR 

WLR 

(%) 

High erosion < -4 2.00 0.25 0.00 0.00 0.00 0.00 

Moderate erosion -3.9 - (-1) 58.00 7.30 40.00 5.03 40.00 5.03 

Stable > -1 735.00 92.45 755.00 94.97 755.00 94.97 

 

The erosion observed along this shoreline can be due to the combined effects of waves and 

tides since this region lacks the presence of islands, which serve as natural barriers to mitigate the 

impact of waves originating from the open sea. This is further supported by a study by Hugo et al. 

(2012), which asserts that the shore experiences the direct influence of waves from the South China 

Sea. The severe erosion can also be due to the increasing demand for urban infrastructure; coastal 

settings are being transformed to accommodate industrial, residential, and tourism purposes. For 

example, while severe erosion has happened in multiple study area sites, a former resort that was 

famous for being a tourist destination named Summerset Resort, Rompin, had seen the most 

substantial damage. The buildings constructed in this area have crumbled, resembling the force of 

a ‘tsunami’ during the past five to six years. The incident is thought to have occurred due to 

haphazard development constructed close to the beach without considering the potential long-term 

consequences, such as the impact of waves (Aziz, 2024). 

While infrastructure is crucial in supporting the growing human population, too much of it 

can also cause severe environmental damage (Arriffin et al., 2023). The rise in population can harm 

the coastal ecosystem due to densely populated regions, which may further worsen erosion levels 

in the study area. 

 

4.0 Conclusion 

The primary objective of this study was to utilise geospatial technology to gain a deeper 

understanding of the shoreline change rate and assess the magnitude of coastal erosion in the Kuala 

Rompin shoreline area. Erosion exhibits significant variability due to semi-diurnal and mixed tides 

with an extensive tidal range, which human activities and global warming have recently amplified. 

The research region’s coastline geomorphology is significantly altered by extensive erosion. The 

vast mudflats region is experiencing increased erosion due to its soft underlying sediments. Another 

consequence of erosion is the alteration of regional hydrodynamics. Given the significant human 
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impact on the study area and its designation as a hub for major human activities, it is crucial to 

conduct a thorough examination of the stability of mudflats, the rate at which sediment is 

transported, and the ability to anticipate future changes in the shoreline of the study region. This is 

necessary to promote sustainable development. The three rate calculation methods, EPR, LRR, and 

WLR, are significant since EPR allows for rapid measurement and straightforward calculation. In 

contrast, LRR and WLR are more dependable as they are entirely based on known statistical 

concepts, making them undeniably computational. 

This research has showcased a flexible and adaptable framework for evaluating the 

susceptibility of coastal areas over 20 years. This extended long-term timeframe allows researchers 

to capture the natural variability and cyclical patterns of coastal processes and detect the gradual, 

cumulative impacts of factors such as climate change, sea-level rise, and human activities on the 

coastline. The analysis of the shoreline data from 2003 to 2023 indicates an average erosion rate of 

-0.48 m/yr using the EPR method and -0.39 m/yr using the LRR and WLR methods. This erosion 

has been particularly severe in specific regions, with the highest rates reaching up to -2.64 m/yr. 

These findings provide valuable insights that can inform sustainable development and coastal 

management strategies for the Kuala Rompin shoreline, which is facing increasing pressures from 

natural phenomena and human activities.  

The findings in this study serve as a crucial reference for environmental scientists, 

policymakers, and coastal managers. Therefore, the study recommends implementing regular and 

systematic monitoring programs, promoting sustainable development practices, adopting 

integrated coastal management approaches, increasing public awareness and education about 

coastal erosion, and developing predictive models to anticipate future changes in the shoreline. 
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